Language Model estimates the probs that the sequences of words can be a sentence said by a human. Training it, we can get the embeddings of the whole vocabulary.

UnConditional Language Model just assigns probs to sequences of words. That’s to say, given the first n-1 words and to predict the probs of the next word.(learn the prob distribution of next word).

Beacuse of the probs chain rule, we only train this:

Conditional LMs

A conditional language model assigns probabilities to sequences of words, W =(w1,w2,…,wt) , given some conditioning context x.

For example, in the translation task, we must given the orininal sentence and its translation. The orininal sentence is the conditioning context, and by using it, we predict the objection sentence.

Data for training conditional LMs:

  To train conditional language models, we need paired
 samples.E.X.

Such task like:Translation, summarisation, caption generation,
 speech recognition

How to evaluate the conditional LMs?

  • Traditional methods: use the cross-entropy or perplexity.(hard to interpret,easy to implement)
  • Task-specific evaluation:  Compare the model’s most likely output to human-generated expected output . Such as 【BLEU】、METEOR、ROUGE…(okay to interpret,easy to implement)
  • Human evaluation: Hard to implement.

Algorithmic challenges:

Given the condition context x, to find the max-probs of the the predict sequence of words, we cannot use the gready search, which might cann’t generate a real sentence.

We use the 【Beam Search】.

We draw attention to the “encoder-decoder” models  that learn a function that maps  x  into a fixed-size
 vector and then uses a language model to “decode”
 that vector into a sequence of words,

Model: K&B2013

A simpal of Encoder – just cumsum(very easy)

A simpal of Encoder – CSM Encoder:use CNN to encode

The Decoder – RNN Decoder

The cal graph is.

Sutskever et al. Model (2014):

- Important.Classic Model

Cal Graph:

Some Tricks to Sutskever et al. Model :

  • Read the Input Sequence ‘backwards’: +4BLEU

  

  • Use an ensemble of m 【independently trained】 models (at the decode period) :
  1. Ensemble of 2 models: +3 BLEU
  2. Ensemble of 5 models: +4.5 BLEU

    For example:

      

  • we want to find the most probable (MAP) output
 given the input,i,e.

      

  We use the beam search : +1BLEU

    For example,the beam size is 2:

      

Example of A Application: Image caption generation

Encoder:CNN

Decoder:RNN or

conditional n-gram LM(different to the RNN but it is useful)

We must have some datasets already.

Kiros et al. Model has done this.

.

【NLP】Conditional Language Models的更多相关文章

  1. 【NLP】Conditional Language Modeling with Attention

    Review: Conditional LMs Note that, in the Encoder part, we reverse the input to the ‘RNN’ and it per ...

  2. [转]【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理 阅读目录

    [NLP]干货!Python NLTK结合stanford NLP工具包进行文本处理  原贴:   https://www.cnblogs.com/baiboy/p/nltk1.html 阅读目录 目 ...

  3. 【NLP】Tika 文本预处理:抽取各种格式文件内容

    Tika常见格式文件抽取内容并做预处理 作者 白宁超 2016年3月30日18:57:08 摘要:本文主要针对自然语言处理(NLP)过程中,重要基础部分抽取文本内容的预处理.首先我们要意识到预处理的重 ...

  4. 【NLP】前戏:一起走进条件随机场(一)

    前戏:一起走进条件随机场 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有 ...

  5. 【NLP】基于自然语言处理角度谈谈CRF(二)

    基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

  6. 【NLP】基于机器学习角度谈谈CRF(三)

    基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都 ...

  7. 【NLP】基于统计学习方法角度谈谈CRF(四)

    基于统计学习方法角度谈谈CRF 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

  8. 【NLP】条件随机场知识扩展延伸(五)

    条件随机场知识扩展延伸 作者:白宁超 2016年8月3日19:47:55 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应 ...

  9. 【NLP】Recurrent Neural Network and Language Models

    0. Overview What is language models? A time series prediction problem. It assigns a probility to a s ...

随机推荐

  1. JavaScript是如何工作的:深入类和继承内部原理 + Babel和TypeScript 之间转换

    这是专门探索 JavaScript 及其所构建的组件的系列文章的第 15 篇. 如果你错过了前面的章节,可以在这里找到它们: JavaScript 是如何工作的:引擎,运行时和调用堆栈的概述! Jav ...

  2. 亚马逊 amazon connect(呼叫中心)

    背景 公司为提高客服部门沟通效率对接电话呼叫中心,调研后选择了亚马逊的Amazon Connect服务,因为是国外业务没有选择用阿里云,怕有坑. Amazon Connect后台 需要在后台创建“联系 ...

  3. Dynamics CRM日期字段查询使用时分秒的方法

    本人微信公众号:微软动态CRM专家罗勇 ,回复293或者20190110可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 我们 ...

  4. MIUI10系统怎么样刷成开发版获得ROOT权限

    小米的设备不同手机型号正常情况下小米官方论坛都提供两个不同系统,可分为稳定版和开发版,稳定版没有提供root超级权限管理,开发版中就提供了root超级权限,在很多工作的时候我们需要使用的一些功能强大的 ...

  5. Visual Studio无法调试

    一.最近Visual studio调试不起来,运行完报错 二.解决方法 打开  调试>>>>选项>>>>常规>>>对ASP.NET启用 ...

  6. 测者的测试技术手册:自动的自动化框架EvoSuite集成Cobertura得到可视化的代码覆盖报告

    EvoSuite是由Sheffield等大学联合开发的一种开源工具,用于自动生成测试用例集,生成的测试用例均符合Junit的标准,可直接在Junit中运行.得到了Google和Yourkit的支持. ...

  7. mysql的定时器

    mysql定时器是系统给提供了event,而oracle里面的定时器是系统给提供的job.废话少说,下面创建表: create table mytable ( id int auto_incremen ...

  8. js实现表格无缝滚动效果

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  9. GoldenDict词典的超级实用高级玩法----全文搜索功能

    快捷键: Ctrl+Shift+F 菜单进入:搜索--全文搜索 模式:正则表达式 比如:我想知道地道的英文表达    请xx天/周/年假 给搜索框写入正则表达式   请(.)(天|周|年)假 就可以了 ...

  10. 4.14Python数据处理篇之Matplotlib系列(十四)---动态图的绘制

    目录 目录 前言 (一)需求分析 (二)随机数的动态图 1.思路分析: 2.源代码: 2.输出效果: 目录 前言 学习matplotlib已经到了尾声,没有必要再继续深究下去了,现今只是学了一些基础的 ...