HBase表数据的转移之使用自定义MapReduce
目标:将fruit表中的一部分数据,通过MR迁入到fruit_mr表中
Step1、构建ReadFruitMapper类,用于读取fruit表中的数据
package com.z.hbase_mr;
import java.io.IOException;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
public class ReadFruitMapper extends TableMapper<ImmutableBytesWritable, Put> {
@Override
protected void map(ImmutableBytesWritable key, Result value, Context context)
throws IOException, InterruptedException {
//将fruit的name和color提取出来,相当于将每一行数据读取出来放入到Put对象中。
Put put = new Put(key.get());
//遍历添加column行
for(Cell cell: value.rawCells()){
//添加/克隆列族:info
if("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))){
//添加/克隆列:name
if("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){
//将该列cell加入到put对象中
put.add(cell);
//添加/克隆列:color
}else if("color".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){
//向该列cell加入到put对象中
put.add(cell);
}
}
}
//将从fruit读取到的每行数据写入到context中作为map的输出
context.write(key, put);
}
}
Step2、构建WriteFruitMRReducer类,用于将读取到的fruit表中的数据写入到fruit_mr表中
package com.z.hbase_mr;
import java.io.IOException;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.NullWritable;
public class WriteFruitMRReducer extends TableReducer<ImmutableBytesWritable, Put, NullWritable> {
@Override
protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context)
throws IOException, InterruptedException {
//读出来的每一行数据写入到fruit_mr表中
for(Put put: values){
context.write(NullWritable.get(), put);
}
}
}
Step3、构建Fruit2FruitMRJob extends Configured implements Tool,用于组装运行Job任务
//组装Job
public int run(String[] args) throws Exception {
//得到Configuration
Configuration conf = this.getConf();
//创建Job任务
Job job = Job.getInstance(conf, this.getClass().getSimpleName());
job.setJarByClass(Fruit2FruitMRJob.class);
//配置Job
Scan scan = new Scan();
scan.setCacheBlocks(false);
scan.setCaching(500);
//设置Mapper,注意导入的是mapreduce包下的,不是mapred包下的,后者是老版本
TableMapReduceUtil.initTableMapperJob(
"fruit", //数据源的表名
scan, //scan扫描控制器
ReadFruitMapper.class,//设置Mapper类
ImmutableBytesWritable.class,//设置Mapper输出key类型
Put.class,//设置Mapper输出value值类型
job//设置给哪个JOB
);
//设置Reducer
TableMapReduceUtil.initTableReducerJob("fruit_mr", WriteFruitMRReducer.class, job);
//设置Reduce数量,最少1个
job.setNumReduceTasks(1);
boolean isSuccess = job.waitForCompletion(true);
if(!isSuccess){
throw new IOException("Job running with error");
}
return isSuccess ? 0 : 1;
}
Step4、主函数中调用运行该Job任务
public static void main( String[] args ) throws Exception{
Configuration conf = HBaseConfiguration.create();
int status = ToolRunner.run(conf, new Fruit2FruitMRJob(), args);
System.exit(status);
}
HBase表数据的转移之使用自定义MapReduce的更多相关文章
- 数据分页处理系列之二:HBase表数据分页处理
HBase是Hadoop大数据生态技术圈中的一项关键技术,是一种用于分布式存储大数据的列式数据库,关于HBase更加详细的介绍和技术细节,朋友们可以在网络上进行搜寻,笔者本人在接下来的日子里也会写 ...
- HBase(三): Azure HDInsigt HBase表数据导入本地HBase
目录: hdfs 命令操作本地 hbase Azure HDInsight HBase表数据导入本地 hbase hdfs命令操作本地hbase: 参见 HDP2.4安装(五):集群及组件安装 , ...
- 一种HBase表数据迁移方法的优化
1.背景调研: 目前存在的hbase数据迁移主要分如下几类: 根据上图,可以看出: 其实主要分为两种方式:(1)hadoop层:因为hbase底层是基于hdfs存储的,所以可以通过把hdfs上的数据拷 ...
- HBase表数据分页处理
HBase表数据分页处理 HBase是Hadoop大数据生态技术圈中的一项关键技术,是一种用于分布式存储大数据的列式数据库,关于HBase更加详细的介绍和技术细节,朋友们可以在网络上进行搜寻,笔者本人 ...
- spark读HFile对hbase表数据进行分析
要求:计算hasgj表,计算每天新增mac数量. 因为spark直接扫描hbase表,对hbase集群访问量太大,给集群造成压力,这里考虑用spark读取HFile进行数据分析. 1.建立hasgj表 ...
- HBase自定义MapReduce
HBase表数据的转移 在Hadoop阶段,我们编写的MR任务分别进程了Mapper和Reducer两个类,而在HBase中我们需要继承的是TableMapper和TableReducer两个类. 目 ...
- hbase操作(shell 命令,如建表,清空表,增删改查)以及 hbase表存储结构和原理
两篇讲的不错文章 http://www.cnblogs.com/nexiyi/p/hbase_shell.html http://blog.csdn.net/u010967382/article/de ...
- HBase学习——3.HBase表设计
1.建表高级属性 建表过程中常用的shell命令 1.1 BLOOMFILTER 默认是 NONE 是否使用布隆过虑及使用何种方式,布隆过滤可以每列族单独启用 使用HColumnDescriptor. ...
- 大数据量场景下storm自定义分组与Hbase预分区完美结合大幅度节省内存空间
前言:在系统中向hbase中插入数据时,常常通过设置region的预分区来防止大数据量插入的热点问题,提高数据插入的效率,同时可以减少当数据猛增时由于Region split带来的资源消耗.大量的预分 ...
随机推荐
- LNMP平台搭建之一:nginx编译安装
参考博客:https://www.cnblogs.com/zhang-shijie/p/5294162.html jack.zhang 一.环境说明 系统环境:centos6.5 [root@lo ...
- python小程序--Three(三级菜单)
#!/usr/bin/env python # _*_ coding:utf8 _*_ data = { "山东省":{ "滨州市":{"惠民县&qu ...
- web框架实现购物车数量加减
企业开发中经常是团队协作,每个人分配一个小的模块,比如说购物车模块,数量加减这一块人们首先想到的就是通过jquery实现,其实作为一个后端接口开发的程序猿也可以用自己更擅长的后端的逻辑代码来实现,那我 ...
- zabbix监控实战<1>
第一章 监控家族 1.1 为什么选择监控? 因为在一个IT集群中或者是一个大环境中,包括各种硬件设备.软件设备等系统的构成也是极其复杂的. 多种应用构成负载的IT业务系统,保证这些资源的正常运转,是一 ...
- Django框架详细介绍---Admin后台管理
1.Admin组件使用 Django内集成了web管理工具,Django在启动过程中会执行setting.py文件,初始化Django内置组件.注册APP.添加环境变量等 # Application ...
- SQL count(1)
If you are ever unsure what to put inside a COUNT() aggregation, you can do COUNT(1) to count the ro ...
- racle SQL性能优化
(1) 选择最有效率的表名顺序(只在基于规则的优化器中有效): Oracle的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先 ...
- Apache Kylin学习资料
官方文档: http://kylin.apache.org/cn/docs/tutorial/web.html kylin对接hive实现实时查询:https://www.cnblogs.com/65 ...
- 《CSS世界》读书笔记(十二)
<!-- <CSS世界>张鑫旭著 --> 正确看待 CSS 世界里的 margin 合并 什么是 margin 合并 块元素的上外边距(margin-top)与下外边距(mar ...
- java线程学习之Sleep方法
sleep方法是在线程中常用到的一个方法,它是一个静态方法. sleep(long millis) 在指定的毫秒数内让当前正在执行的线程休眠(暂停执行),此操作受到系统计时器和调度程序精度 ...