本文主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N、N对1的结构,什么是LSTM,以及LSTM中的三门(input、ouput、forget),后续将利用深度学习框架Kreas,结合案例对LSTM进行进一步的介绍。

一、RNN的原理

  RNN(Recurrent Neural Networks),即全称循环神经网络,它是一种对序列型的数据进行建模的深度模型。如图1.1所示。

图1.1

  1、其中为序列数据。即神经网络的输入,例如nlp中,X1可以看作第一个单词、X2可以看作是第二个单词,依次类推。语音处理中,可以将是每帧的声音信号。时间序列中,例如,某生活用品的销量数据。

  2、U、W、V是参数矩阵,b、c是偏置项,f是激活函数,通常采用”热撸”、tanh函数作为激活函数,用softmax将输出转换成各个类别的概率。

  3、上图为经典的RNN结构,其运算过程可以表示为:

式中:表示神经网络的输出;表示前一个时间点的状态;

  4、考虑到输入与输出的关系,序列问题具有以下分类:

一对多的RNN结构:序列输出,用于图像字幕,如图1.2所示。

图1.2

  多对一的RNN结构:序列输入,用于情感分类,如图1.3所示。

图1.3

  多对多:序列输入和输出,用于机器翻译

  同步多对多:同步序列输入和输出,用于视频分类

二、LSTM的原理

  上面第一部分简单介绍了RNN的几种结构,接下来,介绍一下RNN的改进版:LSTM。LSTM(long short-term memory,长短时记忆网络),它的出现解决了很难处理的“长程依赖”问题,即无法学到序列中蕴含的间隔时间较长的规律RNN每一层的隐状态都由前一层的隐状态经过变换和激活函数得到,反向传播求导时最终得到的导数会包含每一步梯度的连乘,将会引起梯度的消失或者梯度的爆炸。LSTM在隐状态使用了加法替代了每一步的迭代变换,这样便可以避免梯度消失的问题,从而使得网络学到长程的规律。

RNN可用图1.4表示

图1.4

  同理,LSTM的结构图1.5所示

图1.5

  其中图1.5中的符号,长方形表示对输入的数据做变换或激活函数;圆形表示逐点,逐点运算是指两个形状完全相同的矩形的对应位置进行相加、相乘或者其他的一些运算;箭头则表示向量会在那里进行运算。注意: 通过concat操作,才进入Sigmoid或tanh函数。

  RNN与LSTM有所不同,LSTM的隐状态有两部分,一部分是ht ,另一部分则是在各个步骤之间传递的主要信息,绿色的水平线可看作“主干道”,如图1.6所示。通过加法,可以无障碍的在这条主干道上传递,因此较远的梯度也可以在长程上传播,这便是LSTM的核心思想

图1.6

  但是,不是每一步的信息都是完全使用前一步的,而是在 的基础之上“遗忘”掉一些内容,或“记住”一些内容。

  1、  遗忘门,我们首先谈一谈遗忘门,每个单元都有一个“遗忘门”,用来控制遗忘掉 的那些部分,其结构如图1.7所示。其中σ是sigmoid激活函数,它的输出在0~1之间,遗忘门输出的 相同形状的矩阵,该矩阵将会和逐点相乘,决定遗忘掉那部分内容。经过激活函数的输出,f取值接近0的维度上的信息就会被“忘记”,而f取值接近1的维度上的信息就会被保留。

图1.7

  2、 输入层,如图1.8,在循环神经网络“忘记”了部分之前的状态后,它还需要从当前的输入补充最新的记忆,这个过程就是“输入门”完成的。输入门的输入同样是两项,分别是:。它的输出项,一项是 同样经过Sigmoid函数运算得到,其值都是在0~1之间,还有一项。最终要“记住”的内容是点相乘,如图1.9。

图1.8

图1.9

3、  输出门,输出门用于计算另一个隐状态的值,真正的输出(如类别)需要通过做进一步运算得到。输出门的结构如图1.20所示,同样根据计算,中每一个数值在0~1之间,通过得到。

图1.20

最终总结:LSTM中每一步的输入是,隐状态是,最终的输出必须要经过进一步变换得到。

浅谈RNN、LSTM + Kreas实现及应用的更多相关文章

  1. 深度学习:浅谈RNN、LSTM+Kreas实现与应用

    主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学习框 ...

  2. 浅谈分词算法(5)基于字的分词方法(bi-LSTM)

    目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做 ...

  3. 浅谈分词算法(4)基于字的分词方法(CRF)

    目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 ...

  4. 浅谈分词算法(3)基于字的分词方法(HMM)

    目录 前言 目录 隐马尔可夫模型(Hidden Markov Model,HMM) HMM分词 两个假设 Viterbi算法 代码实现 实现效果 完整代码 参考文献 前言 在浅谈分词算法(1)分词中的 ...

  5. 时间序列(六): 炙手可热的RNN: LSTM

    目录 炙手可热的LSTM 引言 RNN的问题 恐怖的指数函数 梯度消失* 解决方案 LSTM 设计初衷 LSTM原理 门限控制* LSTM 的 BPTT 参考文献: 炙手可热的LSTM 引言 上一讲说 ...

  6. 浅谈 Attention 机制的理解

    什么是注意力机制? 注意力机制模仿了生物观察行为的内部过程,即一种将内部经验和外部感觉对齐从而增加部分区域的观察精细度的机制.例如人的视觉在处理一张图片时,会通过快速扫描全局图像,获得需要重点关注的目 ...

  7. 浅谈分词算法基于字的分词方法(HMM)

    前言 在浅谈分词算法(1)分词中的基本问题我们讨论过基于词典的分词和基于字的分词两大类,在浅谈分词算法(2)基于词典的分词方法文中我们利用n-gram实现了基于词典的分词方法.在(1)中,我们也讨论了 ...

  8. 浅谈 Fragment 生命周期

    版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...

  9. 浅谈 LayoutInflater

    浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...

随机推荐

  1. window7环境下ZooKeeper的安装及运行

    简介 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一致性服务的软件,提 ...

  2. 用Group by分组后,取每组的前3条记录,怎么取?

    使用子查询进行查询 SELECT * FROM home_content a WHERE ( SELECT count(id) FROM home_content WHERE class_link = ...

  3. GYM 101617 F

    说到这题还要提到周日下午训练赛,都进去了hmc说他这场单切过准备换一场. 很不幸的是我当时已经开了这个几何题, 开场就开几何是什么鬼啊!!! 给你n个圆,找一点在所有园内并且离原点最远.(保证有解) ...

  4. json-server假数据

    1.安装命令(全局安装) npm install json-server -g 2,检查json-server是否安装成功: json-server -h,出现如下图表示安装成功 3.安装成功后,就可 ...

  5. 《JavaScript DOM编程艺术》学习笔记(二)

    终于开始接着写我的读书笔记了. 17.DOM有insertBefore方法,但并没有提供insertAfter()方法.不过可利用已有的DOM方法和属性编写此函数: function insertAf ...

  6. Javascript——浅谈 Event Flow

    1.Javascript Events : Event Bubbling(事件冒泡) 如果事件从最特定的元素开始,则事件流中的一个阶段称为事件冒泡(DOM中可能最深的节点)然后向上流向最不特定的节点( ...

  7. 用appuploader生成发布证书和描述性文件

    本帖最后由 长发飘 于 2017-4-13 12:34 编辑 之前用AppCan平台开发了一个应用,平台可以同时生成安卓版和苹果版,想着也把这应用上架到App Store试试,于是找同学借了个苹果开发 ...

  8. 急急如律令!火速搭建一个C#即时通信系统!(附源码分享——高度可移植!)

    (2016年3月更:由于后来了解到GGTalk开源即时通讯系统,因此直接采用了该资源用于项目开发,在此对作者表示由衷的感谢!) —————————————————————————————————— 人 ...

  9. [Swift]LeetCode13. 罗马数字转整数 | Roman to Integer

    Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M. Symbol Value I 1 ...

  10. Mysql的两种“超过多少次”写法(力扣596)

    题目: 有一个courses 表 ,有: student (学生) 和 class (课程). 请列出所有超过或等于5名学生的课. 例如,表: +---------+------------+ | s ...