题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。

解题思路:动态规划

第一步,确定问题解的表达式。可将f(n, s) 表示n个骰子点数的和为s的排列情况总数。
第二步,确定状态转移方程。n个骰子点数和为s的种类数只与n-1个骰子的和有关。因为一个骰子有六个点数,那么第n个骰子可能出现1到6的点数。所以第n个骰子点数为1的话,f(n,s)=f(n-1,s-1),当第n个骰子点数为2的话,f(n,s)=f(n-1,s-2),…,依次类推。在n-1个骰子的基础上,再增加一个骰子出现点数和为s的结果只有这6种情况!那么有:

f(n,s)=f(n-1,s-1)+f(n-1,s-2)+f(n-1,s-3)+f(n-1,s-4)+f(n-1,s-5)+f(n-1,s-6)

上面就是状态转移方程,已知初始阶段的解为:
当n=1时, f(1,1)=f(1,2)=f(1,3)=f(1,4)=f(1,5)=f(1,6)=1。

代码如下:

#coding=utf8

def get_ans(n):

    dp = [[0 for i in range(6*n)] for i in range(n)]

    for i in range(6):

        dp[0][i] = 1

    # print dp

    for i in range(1,n):  #1,相当于2个骰子。

        for j in range(i,6*(i+1)):   #[0,i-1]的时候,频数为0(例如2个骰子不可能投出点数和为1)

            dp[i][j] = dp[i-1][j-6] + dp[i-1][j-5] +dp[i-1][j-4]+\

                            dp[i - 1][j - 3] +dp[i-1][j-2] +dp[i-1][j-1]

    count = dp[n-1]

    return count  #算得骰子投出每一个点数的频数。再除以总的排列数即可得到频率

print get_ans(3)  #括号中的数字为骰子的个数。此代码为3个骰子时的情况。

n个骰子的点数之和的更多相关文章

  1. [剑指Offer]60-n个骰子的点数

    题意 输入骰子个数n,打印出所有骰子朝上的点的点数之和,及对应的概率. 题解 循环. n个骰子,点数之和在n~6n范围内.计算n个骰子扔出和为m的情况数,等于n-1个骰子扔出m-1,m-2...m-6 ...

  2. 剑指offer-Q60 n个骰子的点数

    python版本代码 g_maxValue = 6 # 单个骰子最大的点数 def PrintProbability(number): ''' :param number: 骰子的个数 :return ...

  3. 剑指 Offer 60. n个骰子的点数

    剑指 Offer 60. n个骰子的点数 把n个骰子扔在地上,所有骰子朝上一面的点数之和为s.输入n,打印出s的所有可能的值出现的概率. 你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n ...

  4. 【编程题目】n 个骰子的点数

    67.俩个闲玩娱乐(运算).2.n 个骰子的点数.把 n 个骰子扔在地上,所有骰子朝上一面的点数之和为 S.输入 n,打印出 S 的所有可能的值出现的概率. 思路:用递归把每个骰子的可能情况变量,记录 ...

  5. 43. 动态规划求解n个骰子的点数和出现概率(或次数)[Print sum S probability of N dices]

    [题目] 把N个骰子扔在地上,所有骰子朝上一面的点数之和为S.输入N,打印出S的所有可能的值出现的概率. [分析] 典型的动态规划题目. 设n个骰子的和为s出现的次数记为f(n,s),其中n=[1-N ...

  6. 【面试题043】n个骰子的点数

    [面试题043]n个骰子的点数 题目:     把n个骰子扔在地上,所有骰子朝上一面的点数之和为s, 输入n,打印出s的所有可能的值出现的概率.   n个骰子的总点数,最小为n,最大为6n,根据排列组 ...

  7. n个骰子的点数

    把n个骰子扔在地上,所有骰子朝上的一面的点数之和为s.输入n,打印出s的所有可能的值和出现的概率. 解法一:基于递归求骰子点数. /////////////////基于递归求骰子点数///////// ...

  8. N个骰子的点数和的概率分布

    程序设计思路: 假设有n个骰子,关键是需要统计每个点数出现的次数.首先分析第一个骰子点数和有1到6的点数,计算出1到6的每种点数 的次数,并将结果用一个数组pos1记录.然后分析有两个骰子时, 点数为 ...

  9. 《剑指offer(第二版)》面试题60——n个骰子的点数

    一.题目描述 把n个骰子仍在地上,所有的骰子朝上的一面的点数之和为s,输入n,打印出s所有可能的值出现的概率. 二.题解 <剑指offer>上给出的两种方法,尤其是代码,晦涩难懂且没有注释 ...

随机推荐

  1. 关于虹软人脸识别SDK的接入

    背景: 虹软的人脸识别还是不错的,在官方注册一个账号,成为开发者,下载SDK的jar包,在开发者中心,找一个demo就可以开始做了,安装里边的逻辑,先看理解代码,然后就可以控制代码,完成自己想要的功能 ...

  2. 别让持续交付自动化交付bug

    你的连续交付能力用得还好吗,比如频繁发布移动或云应用的特性增强?还是恰好相反,快速发布了带漏洞的版本? - Joel Shore 连续交付能让交付流程跑得更快,但连续交付本身并不能为发布质量打包票.国 ...

  3. java,优先队列的用法

    像C++语言一样,java中,也有包装好的优先队列类PriorityQueue. 用法如下(模板代码): 工作安排问题: 问题描述:设有n件工作分配给n个人,将工作i分配给第j个人所需的费用为cij. ...

  4. 关于requestAnimationFrame与setInterval的一点差异

    requestAnimationFrame与setInterval都可以实现循环触发事件,但是setInterval是基于时间的,而requestAnimationFrame是基于帧数的,在我的一次开 ...

  5. android异步任务处理(网络等耗时操作)

    在实际应用中经常会遇到比较耗时任务的处理,比如网络连接,数据库操作等情况时,如果这些操作都是放在主线程(UI线程)中,则会造成UI的假死现象(android4.0后也不许放在UI线程),这可以使用As ...

  6. web api 安全

    这方面的文章已经有很多了,我只是记录一下自己在项目中应用的具体实现 客户端 DateTime t = DateTime.Now; long timeStamp = SignHelper.Convert ...

  7. C++(实验二)

    实验结论 1.函数重载编程练习: 编写重载函数add(),实现对int型,double型,Complex型数据的加法.在main( )函数中定义不同类型 数据,调用测试. #include <i ...

  8. System.exit()源码分析

    最近代码中常用的System.exit(),就来看看源码. 首先位于java.lang.System中,源码如下: /** * Terminates the currently running Jav ...

  9. JCache只缓存部分字段

    项目中使用的JCache缓存实体,发现每次缓存时存进去了实体,取出的时候字段有些是空的. 具体环境为 Springboot v2.01 JCache(ehcache 3.4.0) jdk 1.8.0_ ...

  10. spiflash

    1.SPI Flash (即SPI Nor Flash)是Nor Flash的一种:2.NOR Flash根据数据传输的位数可以分为并行(Parallel)NOR Flash和串行(SPI)NOR F ...