Problem    UVA - 11374 - Airport Express

Time Limit: 1000 mSec

Problem Description

In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, the Economy-Xpress and the Commercial-Xpress. They travel at different speeds, take different routes and have different costs. Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn’t have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him. Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.

Input

The input consists of several test cases. Consecutive cases are separated by a blank line. The first line of each case contains 3 integers, namely N, S and E (2 ≤ N ≤ 500,1 ≤ S,E ≤ N), which represent the number of stations, the starting point and where the airport is located respectively. There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The next M lines give the information of the routes of the Economy-Xpress. Each consists of three integers X, Y and Z (X,Y ≤ N,1 ≤ Z ≤ 100). This means X and Y are connected and it takes Z minutes to travel between these two stations. The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The next K lines contain the information of the CommercialXpress in the same format as that of the Economy-Xpress. All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.

Output

For each case, you should first list the number of stations which Jason would visit in order. On the next line, output ‘Ticket Not Used’ if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train of Commercial-Xpress. Finally, print the total time for the journey on the last line. Consecutive sets of output must be separated by a blank line.

Sample Input

4 1 4 4 1 2 2 1 3 3 2 4 4 3 4 5 1 2 4 3

Sample Output

1 2 4

2

5

题解:考虑枚举用哪个商业票,为什么这么想呢,因为堆优化Dijkstra复杂度(n+m)logn,乘上个K,如果没有多组数据的话应该是能过的,其实可以做到更好,分别从起点和终点跑两遍最短路,这样对于枚举的用商业票的那一段来说就可以常数时间内算出总费用,因为最短路一定是w(u, v) + dist[u](起点到u最短路) + dist2[v](v到终点最短路),这样问题就在O(K)时间内解决了。

 #include <bits/stdc++.h>

 using namespace std;

 #define REP(i, n) for (int i = 1; i <= (n); i++)
#define sqr(x) ((x) * (x)) const int maxn = + ;
const int maxm = + ;
const int maxs = + ; typedef long long LL;
typedef pair<int, int> pii;
typedef pair<double, double> pdd; const LL unit = 1LL;
const int INF = 0x3f3f3f3f;
const LL mod = ;
const double eps = 1e-;
const double inf = 1e15;
const double pi = acos(-1.0); struct Edge
{
int to, w, next;
} edge[maxm]; struct HeapNode
{
int dis, u;
bool operator<(const HeapNode &a) const
{
return dis > a.dis;
}
}; int tot, head[maxn];
int n, m, k;
int st, en; void init()
{
tot = ;
memset(head, -, sizeof(head));
} void AddEdge(int u, int v, int w)
{
edge[tot].to = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
} int dist[maxn], dist2[maxn];
int pre[maxn], Next[maxn];
bool vis[maxn]; int Dijkstra()
{
memset(dist, INF, sizeof(dist));
memset(vis, false, sizeof(vis));
memset(pre, -, sizeof(pre));
priority_queue<HeapNode> que;
pre[st] = st;
dist[st] = ;
que.push((HeapNode){, st});
while (!que.empty())
{
HeapNode first = que.top();
que.pop();
int u = first.u;
if (vis[u])
continue;
vis[u] = true;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (dist[v] > dist[u] + edge[i].w)
{
pre[v] = u;
dist[v] = dist[u] + edge[i].w;
que.push((HeapNode){dist[v], v});
}
}
}
return dist[en];
} void Dijkstra2()
{
memset(dist2, INF, sizeof(dist2));
memset(vis, false, sizeof(vis));
memset(Next, -, sizeof(Next));
priority_queue<HeapNode> que;
dist2[en] = ;
Next[en] = en;
que.push((HeapNode){, en});
while (!que.empty())
{
HeapNode first = que.top();
que.pop();
int u = first.u;
if (vis[u])
continue;
vis[u] = true;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (dist2[v] > dist2[u] + edge[i].w)
{
Next[v] = u;
dist2[v] = dist2[u] + edge[i].w;
que.push((HeapNode){dist2[v], v});
}
}
}
} int main()
{
ios::sync_with_stdio(false);
cin.tie();
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
bool ok = false;
while (cin >> n >> st >> en)
{
init();
cin >> m;
int x, y, z;
for (int i = ; i < m; i++)
{
cin >> x >> y >> z;
AddEdge(x, y, z);
AddEdge(y, x, z);
}
int Min = Dijkstra();
//cout << "Min:" << Min << endl;
Dijkstra2();
cin >> k;
int ansu = -, ansv = -;
for(int i = ; i < k; i++)
{
cin >> x >> y >> z;
if(dist[x] + z + dist2[y] < Min)
{
Min = dist[x] + z + dist2[y];
ansu = x, ansv = y;
}
if(dist[y] + z + dist2[x] < Min)
{
Min = dist[y] + z + dist2[x];
ansu = y, ansv = x;
}
}
if(!ok)
ok = true;
else
cout << endl;
//cout << "Min:" << Min << endl;
if(ansu == - && ansv == -)
{
int tmp = st;
while(tmp != en)
{
cout << tmp << " ";
tmp = Next[tmp];
}
cout << en << endl;
cout << "Ticket Not Used" << endl;
cout << Min << endl;
}
else
{
int tmp = ansu;
stack<int> ans;
while(!ans.empty())
ans.pop();
while(tmp != st)
{
ans.push(tmp);
tmp = pre[tmp];
}
ans.push(st);
while(!ans.empty())
{
cout << ans.top() << " ";
ans.pop();
}
tmp = ansv;
while (tmp != en)
{
cout << tmp << " ";
tmp = Next[tmp];
}
cout << en << endl;
cout << ansu << endl;
cout << Min << endl;
}
}
return ;
}

UVA - 11374 - Airport Express(堆优化Dijkstra)的更多相关文章

  1. UVA 11374 Airport Express SPFA||dijkstra

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. UVA - 11374 Airport Express (Dijkstra模板+枚举)

    Description Problem D: Airport Express In a small city called Iokh, a train service, Airport-Express ...

  3. UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)

    题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...

  4. UVa 11374 - Airport Express ( dijkstra预处理 )

    起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b);  ans = min( d1[a] + cost(a, b ...

  5. UVA 11374 Airport Express(最短路)

    最短路. 把题目抽象一下:已知一张图,边上的权值表示长度.现在又有一些边,只能从其中选一条加入原图,使起点->终点的距离最小. 当加上一条边a->b,如果这条边更新了最短路,那么起点st- ...

  6. UVA 11374 Airport Express (最短路)

    题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...

  7. UVA 11374 Airport Express(枚举+最短路)

    枚举每条商业线<a, b>,设d[i]为起始点到每点的最短路,g[i]为终点到每点的最短路,ans便是min{d[a] + t[a, b] + g[b]}.注意下判断是否需要经过商业线.输 ...

  8. uva 11374 最短路+记录路径 dijkstra最短路模板

    UVA - 11374 Airport Express Time Limit:1000MS   Memory Limit:Unknown   64bit IO Format:%lld & %l ...

  9. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

随机推荐

  1. Spring Boot2.0 静态资源被拦截问题

    在Spring Boot2.0+的版本中,只要用户自定义了拦截器,则静态资源会被拦截.但是在spring1.0+的版本中,是不会拦截静态资源的. 因此,在使用Spring Boot2.0+时,配置拦截 ...

  2. Nacos 发布 v0.8.0 Pre-GA版本,安全稳定上生产?

    服务注册和服务配置开源项目 Nacos 本周发布了 v0.8.0 Pre-GA 版本,作为开源项目生命周期中的里程碑版本之一,v0.8.0 Pre-GA版本支持登录.命名空间.Metrics监控(对接 ...

  3. 痞子衡嵌入式:语音处理工具Jays-PySPEECH诞生记(3)- 音频显示实现(Matplotlib, NumPy1.15.0)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是语音处理工具Jays-PySPEECH诞生之音频显示实现. 音频显示是Jays-PySPEECH的主要功能,Jays-PySPEECH借 ...

  4. 痞子衡嵌入式:串口调试工具Jays-PyCOM诞生记(5)- 软件优化

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是串口调试工具Jays-PyCOM诞生之软件优化. 前面痞子衡已经初步实现了Jays-PyCOM的串口功能,并且通过了最基本的测试,但目前 ...

  5. C#/VB.NET 给Word文档添加/撤销书签

    在现代办公环境中,阅读或者编辑较长篇幅的Word文档时,想要在文档中某一处或者几处留下标记,方便日后查找.修改时,需要在相对应的文档位置插入书签.那对于开发者而言,在C#或者VB.NET语言环境中,如 ...

  6. Java高阶语法---final

    背景:听说final Java高阶语法是挺进BAT必经之路. final: final关键字顾名思义就是最终不可改变的. 1.含义:final可以声明成员变量.方法.类和本地变量:一旦将引用声明为fi ...

  7. Android Material Design控件使用(三)——CardView 卡片布局和SnackBar使用

    cardview 预览图 常用属性 属性名 说明 cardBackgroundColor 设置背景颜色 cardCornerRadius 设置圆角大小 cardElevation 设置z轴的阴影 ca ...

  8. 如何用ABP框架快速完成项目(面向项目交付编程面向客户编程篇)(1) - 目录

    昨天发表了<如何用ABP框架快速完成项目 - 自动化测试 - 前端angular e2e protractor>后,大家十分热情,几个小时内就收到了不少问题,包括: 对于ui自动化测试这方 ...

  9. 基于LBS的六边形热力图算法

    六边形算法: 我把六边形铺满的分布图进行了切分,切分为矩形,每个矩形中有一个六边形.4个三角形.两个小长方形,依次计算.边界判断上,采用主流的MP>MN的方式(M为上边界对称点,N为与六边形的交 ...

  10. 算法:数组中和为s的两个数字

    @问题 :题目描述输入一个递增排序的数组和一个数字S,在数组中查找两个数,使得他们如果有多对数字的和等于S,输出两个数的乘积最小的. 输出描述:对应每个测试案例,输出两个数,小的先输出.@思路: 两个 ...