Problem    UVA - 11374 - Airport Express

Time Limit: 1000 mSec

Problem Description

In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, the Economy-Xpress and the Commercial-Xpress. They travel at different speeds, take different routes and have different costs. Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn’t have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him. Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.

Input

The input consists of several test cases. Consecutive cases are separated by a blank line. The first line of each case contains 3 integers, namely N, S and E (2 ≤ N ≤ 500,1 ≤ S,E ≤ N), which represent the number of stations, the starting point and where the airport is located respectively. There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The next M lines give the information of the routes of the Economy-Xpress. Each consists of three integers X, Y and Z (X,Y ≤ N,1 ≤ Z ≤ 100). This means X and Y are connected and it takes Z minutes to travel between these two stations. The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The next K lines contain the information of the CommercialXpress in the same format as that of the Economy-Xpress. All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.

Output

For each case, you should first list the number of stations which Jason would visit in order. On the next line, output ‘Ticket Not Used’ if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train of Commercial-Xpress. Finally, print the total time for the journey on the last line. Consecutive sets of output must be separated by a blank line.

Sample Input

4 1 4 4 1 2 2 1 3 3 2 4 4 3 4 5 1 2 4 3

Sample Output

1 2 4

2

5

题解:考虑枚举用哪个商业票,为什么这么想呢,因为堆优化Dijkstra复杂度(n+m)logn,乘上个K,如果没有多组数据的话应该是能过的,其实可以做到更好,分别从起点和终点跑两遍最短路,这样对于枚举的用商业票的那一段来说就可以常数时间内算出总费用,因为最短路一定是w(u, v) + dist[u](起点到u最短路) + dist2[v](v到终点最短路),这样问题就在O(K)时间内解决了。

  1. #include <bits/stdc++.h>
  2.  
  3. using namespace std;
  4.  
  5. #define REP(i, n) for (int i = 1; i <= (n); i++)
  6. #define sqr(x) ((x) * (x))
  7.  
  8. const int maxn = + ;
  9. const int maxm = + ;
  10. const int maxs = + ;
  11.  
  12. typedef long long LL;
  13. typedef pair<int, int> pii;
  14. typedef pair<double, double> pdd;
  15.  
  16. const LL unit = 1LL;
  17. const int INF = 0x3f3f3f3f;
  18. const LL mod = ;
  19. const double eps = 1e-;
  20. const double inf = 1e15;
  21. const double pi = acos(-1.0);
  22.  
  23. struct Edge
  24. {
  25. int to, w, next;
  26. } edge[maxm];
  27.  
  28. struct HeapNode
  29. {
  30. int dis, u;
  31. bool operator<(const HeapNode &a) const
  32. {
  33. return dis > a.dis;
  34. }
  35. };
  36.  
  37. int tot, head[maxn];
  38. int n, m, k;
  39. int st, en;
  40.  
  41. void init()
  42. {
  43. tot = ;
  44. memset(head, -, sizeof(head));
  45. }
  46.  
  47. void AddEdge(int u, int v, int w)
  48. {
  49. edge[tot].to = v;
  50. edge[tot].w = w;
  51. edge[tot].next = head[u];
  52. head[u] = tot++;
  53. }
  54.  
  55. int dist[maxn], dist2[maxn];
  56. int pre[maxn], Next[maxn];
  57. bool vis[maxn];
  58.  
  59. int Dijkstra()
  60. {
  61. memset(dist, INF, sizeof(dist));
  62. memset(vis, false, sizeof(vis));
  63. memset(pre, -, sizeof(pre));
  64. priority_queue<HeapNode> que;
  65. pre[st] = st;
  66. dist[st] = ;
  67. que.push((HeapNode){, st});
  68. while (!que.empty())
  69. {
  70. HeapNode first = que.top();
  71. que.pop();
  72. int u = first.u;
  73. if (vis[u])
  74. continue;
  75. vis[u] = true;
  76. for (int i = head[u]; i != -; i = edge[i].next)
  77. {
  78. int v = edge[i].to;
  79. if (dist[v] > dist[u] + edge[i].w)
  80. {
  81. pre[v] = u;
  82. dist[v] = dist[u] + edge[i].w;
  83. que.push((HeapNode){dist[v], v});
  84. }
  85. }
  86. }
  87. return dist[en];
  88. }
  89.  
  90. void Dijkstra2()
  91. {
  92. memset(dist2, INF, sizeof(dist2));
  93. memset(vis, false, sizeof(vis));
  94. memset(Next, -, sizeof(Next));
  95. priority_queue<HeapNode> que;
  96. dist2[en] = ;
  97. Next[en] = en;
  98. que.push((HeapNode){, en});
  99. while (!que.empty())
  100. {
  101. HeapNode first = que.top();
  102. que.pop();
  103. int u = first.u;
  104. if (vis[u])
  105. continue;
  106. vis[u] = true;
  107. for (int i = head[u]; i != -; i = edge[i].next)
  108. {
  109. int v = edge[i].to;
  110. if (dist2[v] > dist2[u] + edge[i].w)
  111. {
  112. Next[v] = u;
  113. dist2[v] = dist2[u] + edge[i].w;
  114. que.push((HeapNode){dist2[v], v});
  115. }
  116. }
  117. }
  118. }
  119.  
  120. int main()
  121. {
  122. ios::sync_with_stdio(false);
  123. cin.tie();
  124. //freopen("input.txt", "r", stdin);
  125. //freopen("output.txt", "w", stdout);
  126. bool ok = false;
  127. while (cin >> n >> st >> en)
  128. {
  129. init();
  130. cin >> m;
  131. int x, y, z;
  132. for (int i = ; i < m; i++)
  133. {
  134. cin >> x >> y >> z;
  135. AddEdge(x, y, z);
  136. AddEdge(y, x, z);
  137. }
  138. int Min = Dijkstra();
  139. //cout << "Min:" << Min << endl;
  140. Dijkstra2();
  141. cin >> k;
  142. int ansu = -, ansv = -;
  143. for(int i = ; i < k; i++)
  144. {
  145. cin >> x >> y >> z;
  146. if(dist[x] + z + dist2[y] < Min)
  147. {
  148. Min = dist[x] + z + dist2[y];
  149. ansu = x, ansv = y;
  150. }
  151. if(dist[y] + z + dist2[x] < Min)
  152. {
  153. Min = dist[y] + z + dist2[x];
  154. ansu = y, ansv = x;
  155. }
  156. }
  157. if(!ok)
  158. ok = true;
  159. else
  160. cout << endl;
  161. //cout << "Min:" << Min << endl;
  162. if(ansu == - && ansv == -)
  163. {
  164. int tmp = st;
  165. while(tmp != en)
  166. {
  167. cout << tmp << " ";
  168. tmp = Next[tmp];
  169. }
  170. cout << en << endl;
  171. cout << "Ticket Not Used" << endl;
  172. cout << Min << endl;
  173. }
  174. else
  175. {
  176. int tmp = ansu;
  177. stack<int> ans;
  178. while(!ans.empty())
  179. ans.pop();
  180. while(tmp != st)
  181. {
  182. ans.push(tmp);
  183. tmp = pre[tmp];
  184. }
  185. ans.push(st);
  186. while(!ans.empty())
  187. {
  188. cout << ans.top() << " ";
  189. ans.pop();
  190. }
  191. tmp = ansv;
  192. while (tmp != en)
  193. {
  194. cout << tmp << " ";
  195. tmp = Next[tmp];
  196. }
  197. cout << en << endl;
  198. cout << ansu << endl;
  199. cout << Min << endl;
  200. }
  201. }
  202. return ;
  203. }

UVA - 11374 - Airport Express(堆优化Dijkstra)的更多相关文章

  1. UVA 11374 Airport Express SPFA||dijkstra

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. UVA - 11374 Airport Express (Dijkstra模板+枚举)

    Description Problem D: Airport Express In a small city called Iokh, a train service, Airport-Express ...

  3. UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)

    题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...

  4. UVa 11374 - Airport Express ( dijkstra预处理 )

    起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b);  ans = min( d1[a] + cost(a, b ...

  5. UVA 11374 Airport Express(最短路)

    最短路. 把题目抽象一下:已知一张图,边上的权值表示长度.现在又有一些边,只能从其中选一条加入原图,使起点->终点的距离最小. 当加上一条边a->b,如果这条边更新了最短路,那么起点st- ...

  6. UVA 11374 Airport Express (最短路)

    题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...

  7. UVA 11374 Airport Express(枚举+最短路)

    枚举每条商业线<a, b>,设d[i]为起始点到每点的最短路,g[i]为终点到每点的最短路,ans便是min{d[a] + t[a, b] + g[b]}.注意下判断是否需要经过商业线.输 ...

  8. uva 11374 最短路+记录路径 dijkstra最短路模板

    UVA - 11374 Airport Express Time Limit:1000MS   Memory Limit:Unknown   64bit IO Format:%lld & %l ...

  9. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

随机推荐

  1. Chapter 4 Invitations——15

    He slouched off, back toward the school. 他无精打采的回去了学校. I heard a low chuckle. 我听到了低声的笑. Edward was wa ...

  2. wsl中使用原生docker

    之前介绍过windows中安装docker,但是它需要用到hyper-v.hyper-v与vm不兼容非常之不方便.不过发现windows有wsl(linux子系统)遂试验,结果非常nice功能一应俱全 ...

  3. 找到bug的根源,问五次为什么

    在学习<问题分析与解决>时学到了一种找到问题根源的方法——问五次为什么.具体内容是:当遇到一个问题,不要只看当前答案,要继续往下问,为什么,连问五次,就能够找到更深层次的问题.最近在复盘b ...

  4. 练习使用 __attribute__ 属性(仿照内核)

    上一篇文章分析了内核中各种 initcall 的调用过程,在这个基础上大概掌握了内核中使用的这种方法,于是参考内核及网友的文章自己动手写了下,记录在这个随笔中. 源代码如下: #include < ...

  5. .NET Core Cache [MemoryCache]

    参考资料:long0801的博客.MemoryCache微软官方文档 添加对Microsoft.Extensions.Caching.Memory命名空间的引用,它提供了.NET Core默认实现的M ...

  6. 如何终止正在进行expdp导出数据的任务

    不能用ctrl+c来终止导出 一.按照以前的习惯,在进行oracle数据库数据导出操作时,大家一般都会使用组合键“CTRL+C”来终止导出操作.但这种方法在expdp导出数据时,却不能使用,因为虽然可 ...

  7. EF 批量 添加 修改 删除

    1批量添加    db.T_Investigator.AddRange(list) 2批量删除    db.T_Investigator.RemoveRange(list) 3批量修改   for 循 ...

  8. winform中获取指定文件夹下的所有图片

    方法一: C#的IO自带了一个方法DirectoryInfo dir = new DirectoryInfo("文件夹名称");dir.getFiles();//这个方法返回值就是 ...

  9. 学习前端笔记1(HTML)

    (注:此文是在看过许多学习资料和视频之后,加上自身理解拼凑而成,仅作学习之用.若有版权问题,麻烦及时联系) 标准页面结构: HTML发展历史:  注:每一种HTML需要有对应的doctype声明. H ...

  10. 解决nginx配置负载均衡时invalid host in upstream报错

    当前平台: windows nginx版本: 1.11.5 前言: 在配置负载均衡时,同时也需要设置反向代理,当修改了nginx.conf时,发现nginx服务无法开启. 1. 打开"ngi ...