在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法。本文关注于潜在语义索引算法(LSI)的原理。

1. 文本主题模型的问题特点

    在数据分析中,我们经常会进行非监督学习的聚类算法,它可以对我们的特征数据进行非监督的聚类。而主题模型也是非监督的算法,目的是得到文本按照主题的概率分布。从这个方面来说,主题模型和普通的聚类算法非常的类似。但是两者其实还是有区别的。

    聚类算法关注于从样本特征的相似度方面将数据聚类。比如通过数据样本之间的欧式距离,曼哈顿距离的大小聚类等。而主题模型,顾名思义,就是对文字中隐含主题的一种建模方法。比如从“人民的名义”和“达康书记”这两个词我们很容易发现对应的文本有很大的主题相关度,但是如果通过词特征来聚类的话则很难找出,因为聚类方法不能考虑到到隐含的主题这一块。

    那么如何找到隐含的主题呢?这个一个大问题。常用的方法一般都是基于统计学的生成方法。即假设以一定的概率选择了一个主题,然后以一定的概率选择当前主题的词。最后这些词组成了我们当前的文本。所有词的统计概率分布可以从语料库获得,具体如何以“一定的概率选择”,这就是各种具体的主题模型算法的任务了。

    当然还有一些不是基于统计的方法,比如我们下面讲到的LSI。

2. 潜在语义索引(LSI)概述

    潜在语义索引(Latent Semantic Indexing,以下简称LSI),有的文章也叫Latent Semantic  Analysis(LSA)。其实是一个东西,后面我们统称LSI,它是一种简单实用的主题模型。LSI是基于奇异值分解(SVD)的方法来得到文本的主题的。而SVD及其应用我们在前面的文章也多次讲到,比如:奇异值分解(SVD)原理与在降维中的应用矩阵分解在协同过滤推荐算法中的应用。如果大家对SVD还不熟悉,建议复习奇异值分解(SVD)原理与在降维中的应用后再读下面的内容。

    这里我们简要回顾下SVD:对于一个$m \times n$的矩阵$A$,可以分解为下面三个矩阵:

$$A_{m \times n} = U_{m \times m}\Sigma_{m \times n} V^T_{n \times n}$$

    有时为了降低矩阵的维度到k,SVD的分解可以近似的写为:

$$A_{m \times n} \approx U_{m \times k}\Sigma_{k \times k} V^T_{k \times n}$$

    如果把上式用到我们的主题模型,则SVD可以这样解释:我们输入的有m个文本,每个文本有n个词。而$A_{ij}$则对应第i个文本的第j个词的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,$U_{il}$对应第i个文本和第l个主题的相关度。$V_{jm}$对应第j个词和第m个词义的相关度。$\Sigma_{lm}$对应第l个主题和第m个词义的相关度。

    也可以反过来解释:我们输入的有m个词,对应n个文本。而$A_{ij}$则对应第i个词档的第j个文本的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,$U_{il}$对应第i个词和第l个词义的相关度。$V_{jm}$对应第j个文本和第m个主题的相关度。$\Sigma_{lm}$对应第l个词义和第m个主题的相关度。

    这样我们通过一次SVD,就可以得到文档和主题的相关度,词和词义的相关度以及词义和主题的相关度。

3. LSI简单实例

    这里举一个简单的LSI实例,假设我们有下面这个有11个词三个文本的词频TF对应矩阵如下:

    

    这里我们没有使用预处理,也没有使用TF-IDF,在实际应用中最好使用预处理后的TF-IDF值矩阵作为输入。

    我们假定对应的主题数为2,则通过SVD降维后得到的三矩阵为:

    从矩阵$U_k$我们可以看到词和词义之间的相关性。而从$V_k$可以看到3个文本和两个主题的相关性。大家可以看到里面有负数,所以这样得到的相关度比较难解释。

4. LSI用于文本相似度计算

    在上面我们通过LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。比如对于上面的三文档两主题的例子。我们可以计算第一个文本和第二个文本的余弦相似度如下 :$$sim(d1,d2) = \frac{(-0.4945)*(-0.6458) + (0.6492)*(-0.7194)}{\sqrt{(-0.4945)^2+0.6492^2}\sqrt{(-0.6458)^2+(-0.7194)^2}}$$

5. LSI主题模型总结

    LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在当前实际的主题模型中已基本不再使用。

    主要的问题有:

    1) SVD计算非常的耗时,尤其是我们的文本处理,词和文本数都是非常大的,对于这样的高维度矩阵做奇异值分解是非常难的。

    2) 主题值的选取对结果的影响非常大,很难选择合适的k值。

    3) LSI得到的不是一个概率模型,缺乏统计基础,结果难以直观的解释。

    对于问题1),主题模型非负矩阵分解(NMF)可以解决矩阵分解的速度问题。对于问题2),这是老大难了,大部分主题模型的主题的个数选取一般都是凭经验的,较新的层次狄利克雷过程(HDP)可以自动选择主题个数。对于问题3),牛人们整出了pLSI(也叫pLSA)和隐含狄利克雷分布(LDA)这类基于概率分布的主题模型来替代基于矩阵分解的主题模型。

    回到LSI本身,对于一些规模较小的问题,如果想快速粗粒度的找出一些主题分布的关系,则LSI是比较好的一个选择,其他时候,如果你需要使用主题模型,推荐使用LDA和HDP。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

文本主题模型之潜在语义索引(LSI)的更多相关文章

  1. 文本主题模型之非负矩阵分解(NMF)

    在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题.这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解 ...

  2. 主题模型之潜在语义分析(Latent Semantic Analysis)

    主题模型(Topic Models)是一套试图在大量文档中发现潜在主题结构的机器学习模型,主题模型通过分析文本中的词来发现文档中的主题.主题之间的联系方式和主题的发展.通过主题模型可以使我们组织和总结 ...

  3. 文本主题模型之LDA(二) LDA求解之Gibbs采样算法

    文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 本文是LDA主题模型的第二篇, ...

  4. 文本主题模型之LDA(一) LDA基础

    文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 在前面我们讲到了基于矩阵分解的 ...

  5. 文本主题模型之LDA(三) LDA求解之变分推断EM算法

    文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前 ...

  6. NLP学习(2)----文本分类模型

    实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) ...

  7. gensim做主题模型

    作为Python的一个库,gensim给了文本主题模型足够的方便,像他自己的介绍一样,topic modelling for humans 具体的tutorial可以参看他的官方网页,当然是全英文的, ...

  8. 自然语言处理之LDA主题模型

    1.LDA概述 在机器学习领域,LDA是两个常用模型的简称:线性判别分析(Linear Discriminant Analysis)和 隐含狄利克雷分布(Latent Dirichlet Alloca ...

  9. NLP传统基础(3)---潜在语义分析LSA主题模型---SVD得到降维矩阵

    https://www.jianshu.com/p/9fe0a7004560 一.简单介绍 LSA和传统向量空间模型(vector space model)一样使用向量来表示词(terms)和文档(d ...

随机推荐

  1. 记录新项目中遇到的技术及自己忘记的技术点【DES加密解密,MD5加密,字符串压缩、解压,字符串截取等操作】

    一.DES加密.解密 #region DES加密解密 /// <summary> /// 进行DES加密 /// </summary> /// <param name=& ...

  2. JPG、PNG、GIF、SVG 等格式图片区别

    1.图片 2. 前言 首先,我们要清楚的是,图片从类型上分,可以分为 位图 和 矢量图. 位图:位图又叫点阵图或像素图,计算机屏幕上的图是由屏幕上的发光点(即像素)构成的,每个点用二进制数据来描述其颜 ...

  3. Linux 搭建 Nginx+PHP-FPM环境

    安装PHP.Nginx和PHP-FPM sudo apt-get install php sudo apt-get install nginx sudo apt-get install php7-fp ...

  4. centOS7上编译hadoop-2.7.7

    一.阅读编译文档 在hadoop源码包根目录下有个一个BUINDING.txt的文件,文件说明了编译hadoop所需要的一些编译hadoop所需要的一些编译环境相关的东西.不同hadoop版本的要求都 ...

  5. maven <include>与<exclude>划定的范围存在冲突,则以<exclude>配置为准。

    maven 与划定的范围存在冲突,则以配置为准.

  6. ora-01033 oracle initialization or

    这次出现这个问题是源于错删了 DBF文件. 解决方案如下: 1.打开SQL Plus 最后把你删掉的那个文件的表空间删掉就好了

  7. 限制oracle某用户仅能从某IP登录

    system用户创建触发器,登录后触发检查 CREATE OR REPLACE TRIGGER system.check_ip_addresses_test AFTER logon ON DATABA ...

  8. C# 数组结构

    数组结构: Array :在内存上是连续分配的,而且元素类型是一致的: 特点:是读取快 可以坐标访问 但是增删慢,长度不能变 比如 int[] intArray=new int[20]; intArr ...

  9. 关于分布式环境下的id生成

    public class IdWorker { //基准时间 public const long Twepoch = 1288834974657L; //机器标识位数 ; //数据标志位数 ; //序 ...

  10. 逆天的 GRUB

    参考资料 GRUB 的文档在这里:https://www.gnu.org/software/grub/manual/grub/ Linux 的启动过程和 GRUB 的地位 Linux 系统启动的过程是 ...