[物理学与PDEs]第2章第1节 理想流体力学方程组 1.3 理想流体力学方程组的数学结构
1. 局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$.
2. 将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\p t} +(\rho {\bf u}\cdot\n){\bf u}+\n p&=\rho{\bf F},\\ \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\n\cdot{\bf u}+\cfrac{1}{\rho c^2}({\bf u}\cdot\n)p&=0,\\ \cfrac{\p S}{\p t}+({\bf u}\cdot\n)S&=0 \eea \eeex$$ 写成 $$\bee\label{2_1_2_dc} A_0\cfrac{\p U}{\p t} +\sum_{i=1}^3 A_i\cfrac{\p U}{\p x_i}=C, \eee$$ 其中 $U=(u_1,u_2,u_3,p,S)^T$, 则有 $$\beex \bea A_0=\sex{\ba{ccccc} \rho &&&&\\ &\rho&&&\\ &&\rho&&\\ &&&\cfrac{1}{\rho c^2}&\\ &&&&1 \ea},&\quad A_1=\sex{\ba{ccccc} \rho u_1&&&1&\\ &\rho u_1&&&\\ &&\rho u_1&&\\ 1&&&\cfrac{u_1}{\rho c^2}&\\ &&&&u_1 \ea},\\ A_2=\sex{\ba{ccccc} \rho u_2&&&&\\ &\rho u_2&&1&\\ &&\rho u_2&&\\ &1&&\cfrac{u_2}{\rho c^2}&\\ &&&&u_2 \ea},&\quad A_3=\sex{\ba{ccccc} \rho u_3&&&&\\ 0&\rho u_3&&&\\ &&\rho u_3&1&\\ &&1&\cfrac{u_3}{\rho c^2}&\\ &&&&u_3 \ea},\\ C=(\rho F_1,\rho F_2,\rho F_3,0,0)^T.& \eea \eeex$$
3. 当 $\rho>0$ 时, \eqref{2_1_2_dc} 为一阶拟线性对称双曲型偏微分方程组. 而可考虑 Cauchy 问题、初-边值问题.
4. 理想流体力学方程组可化为一阶拟线性对称双曲组 $$\bex \cfrac{\p L^0_{v_i}}{\p t} +\sum_{k=1}^3 \cfrac{\p }{\p x_k}L^k_{v_i}=0,\quad i=0,1,\cdot,4. \eex$$ 其中 $$\bex L_0=-\cfrac{p}{T},\quad L^k=-\cfrac{p}{T}u_k\ (k=1,2,3). \eex$$ 这里,
(1) $L_{v_iv_j}$ 为对称正定阵.
(2) $v_i\ (i=0,1,\cdots,4)$ 及 $L$ 为 $\rho,\rho u_1,\rho u_2,\rho u_3, \rho e+\cfrac{1}{2}\rho u^2$ 及 $\rho S$ 的 Legendre 变换.
5. 一般的守恒律方程组可化为一阶对称双曲组的一个充要条件
设有守恒律方程组 $$\bee\label{2_1_shl} \cfrac{\p U}{\p t}+\sum_{k=1}^3 \cfrac{\p}{\p x_k} B^k(U)=0, \eee$$ 其中 $$\bex U=(u_1,\cdots,u_n)^T,\quad B^k=(b^k_1,\cdots,b^k_n)^T. \eex$$ 则 \eqref{2_1_shl} 可通过未知函数变换 $$\bex U=U(V),\quad (u_i=u_i(v_1,\cdots,v_n),\ i=1,\cdots,n) \eex$$ 化为守恒律形式的一阶对称双曲组的充要条件为: 存在严格凸的标量 $W(U)$ 与向量函数 $H=(h_1(U),h_2(U),h_3(U))^T$, 使成立如下附加守恒律 $$\bex \cfrac{\p }{\p t}W(U)+\sum_{k=1}^3 \cfrac{\p}{\p x_k}h_k(U)=0. \eex$$ 这里, $W(U)$ 称为 \eqref{2_1_shl} 的熵函数, $H(U)$ 称为熵流函数.
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.3 理想流体力学方程组的数学结构的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- springMVC框架核心方法调用源码解析
- day23--面向对象之封装、继承、多态
面向对象的三大特性: 封装: 在类的内部(class内部)可以由属性和方法,外部代码可以通过直接调用实例变量的方法来操作数据,这样就隐藏了内部的逻辑,但是外部还是可以直接修改实例的属性,因此当需求中存 ...
- eclipse换工作空间站快捷键失效解决
1.找到你可以用快捷键的eclipse的空间所在目录.2.复制.metadata文件.3.找到不可用快捷键的空间目录,把之前复制的文件夹覆盖到现在的.4.重启eclipse.
- rocketmq 4.4部署安装
官网下载:rocketmq-all-4.4.0-bin-release.zip 准备环境:centos7.6 Maven Java8+ 操作: 在工作目录中进行如下操作: /home/software ...
- sklearn.linear_model.LogisticRegression参数说明
目录 sklearn.linear_model.LogisticRegression sklearn.linear_model.LogisticRegressionCV sklearn.linear_ ...
- 07-JavaScript之常用内置对象
JavaScript之常用内置对象 1.数组Array 1.1数组的创建方式 // 直接创建数组 var colors = ['red', 'blue', 'green']; console.log( ...
- Flask--路由, 配置, 蓝图
一 . 双重装饰器重名的解决办法 # 我们都知道flask中的@app.route就是一层装饰器, 当我们需要在给视图函数加装饰器的时候就两层装饰器,这里介绍一下加装饰器的先后顺序,以及遇到的问题. ...
- vscode在vue-cli中按照ESlint自动格式化代码
先安装 1 npm i -S eslint-plugin-vue .eslintrc下 1 2 3 "plugins": [ "vue" ] vscod ...
- Python——OS模块
OS模块 OS模块 #os模块就是对操作系统进行操作,使用该模块必须先导入模块: import os #getcwd() 获取当前工作目录(当前工作目录默认都是当前文件所在的文件夹) result = ...
- Python开发第一篇
Python 是什么? 首先他可能是比较好的一个编程开发语言!