题目描述

iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练。经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的;元素与元素之间可以互相转换;能量守恒……。 能量守恒……iPig 今天就在进行一个麻烦的测验。iPig 在之前的学习中已经知道了很多种元素,并学会了可以转化这些元素的魔法,每种魔法需要消耗 iPig 一定的能量。作为 PKU 的顶尖学猪,让 iPig 用最少的能量完成从一种元素转换到另一种元素……等等,iPig 的魔法导猪可没这么笨!这一次,他给 iPig 带来了很多 1 号元素的样本,要求 iPig 使用学习过的魔法将它们一个个转化为 N 号元素,为了增加难度,要求每份样本的转换过程都不相同。这个看似困难的任务实际上对 iPig 并没有挑战性,因为,他有坚实的后盾……现在的你呀! 注意,两个元素之间的转化可能有多种魔法,转化是单向的。转化的过程中,可以转化到一个元素(包括开始元素)多次,但是一但转化到目标元素,则一份样本的转化过程结束。iPig 的总能量是有限的,所以最多能够转换的样本数一定是一个有限数。具体请参看样例。

输入

第一行三个数 N、M、E 表示iPig知道的元素个数(元素从 1 到 N 编号)、iPig已经学会的魔法个数和iPig的总能量。 后跟 M 行每行三个数 si、ti、ei 表示 iPig 知道一种魔法,消耗 ei 的能量将元素 si 变换到元素 ti 。

输出

一行一个数,表示最多可以完成的方式数。输入数据保证至少可以完成一种方式。

样例输入

4 6 14.9
1 2 1.5
2 1 1.5
1 3 3
2 3 1.5
3 4 1.5
1 4 1.5

样例输出

3

提示

样例解释
有意义的转换方式共4种:
1->4,消耗能量 1.5
1->2->1->4,消耗能量 4.5
1->3->4,消耗能量 4.5
1->2->3->4,消耗能量 4.5
显然最多只能完成其中的3种转换方式(选第一种方式,后三种方式仍选两个),即最多可以转换3份样本。
如果将 E=14.9 改为 E=15,则可以完成以上全部方式,答案变为 4。
数据规模
占总分不小于 10% 的数据满足 N <= 6,M<=15。
占总分不小于 20% 的数据满足 N <= 100,M<=300,E<=100且E和所有的ei均为整数(可以直接作为整型数字读入)。
所有数据满足 2 <= N <= 5000,1 <= M <= 200000,1<=E<=107,1<=ei<=E,E和所有的ei为实数。

首先对反向边跑最短路建出以$n$为根的最短路树。

对于一条从$1$到$n$的路径上的边集$S$(边有顺序),除去在最短路上的边,剩下的边组成的集合为$S'$(按$S$中的顺序),那么对于$S'$中顺序相邻的两条边$(u,v)$和$(s,t)$,$s$一定是$v$的祖先或相同点(因为$s$与$v$在树上直接相连或由树边相连)。

我们设$val_{e}=d_{v}+w-d_{u}$,其中$e$为一条不在最短路树上的边,$d_{i}$表示点$i$到$n$的最短路长度,$w$为这条边的边权,$u,v$分别为这条边的起点和终点。

那么一条从$1$到$n$的路径长度$len$就可以表示成$len=d_{1}+\sum\limits_{e\in S'}^{ }val_{e}$。

那么问题就转化成求第$k$小的$S'$。

最小的$S'$显然是空集,即$S$为从$1$到$n$的最短路。

那么现在考虑如何获得一个新的相对较小的边集,对于一个边集$S'$有两种方法(假设$S'$中最后一条边为$(u,v)$):

1、将$(u,v)$换成以$u$或$u$的祖先为起点的$val$最小的一条非树边。

2、在$S'$的最后添加一条新的非树边满足这条非树边的起点是$v$在最短路树上的祖先或$v$本身,当然也是使这条边的$val$尽量小。

那么我们只需要维护一个小根堆,每次取出堆顶的边集并将通过这个边集获得的新的边集加入堆中即可。

对于两种获得新边集的方法,都需要维护出这个点到$n$路径上所有点的堆中的信息。

我们将每个堆变为可并堆并可持久化,即每个点的堆保存了从这个点到根路径上所有点的堆的信息。

将每个点的可并堆像线段树合并的可持久化一样与子节点的堆合并即可。

$bzoj$与$luogu$的精度不同,代码附上两个版本的。

$bzoj$

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define pr pair<double,int>
const double eps = 1e-6;
using namespace std;
int tot;
int cnt;
int head[5010];
int to[400010];
int next[400010];
double val[400010];
int root[5010];
int ls[2000010];
int rs[2000010];
int end[2000010];
double v[2000010];
double d[5010];
int dis[2000010];
int n,m;
double E,z;
int x,y;
int vis[5010];
int from[5010];
int f[400010];
vector<int>e[5010];
int ans;
priority_queue< pr,vector<pr>,greater<pr> >q;
void add(int x,int y,double z)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=z;
}
int build(double val,int to)
{
int rt=++cnt;
v[rt]=val;
end[rt]=to;
dis[rt]=1;
return rt;
}
int merge(int x,int y)
{
if(!x||!y)
{
return x+y;
}
if(v[x]-v[y]>=eps)
{
swap(x,y);
}
int rt=++cnt;
ls[rt]=ls[x],rs[rt]=rs[x],end[rt]=end[x],dis[rt]=dis[x],v[rt]=v[x];
rs[rt]=merge(rs[rt],y);
if(dis[ls[rt]]<dis[rs[rt]])
{
swap(ls[rt],rs[rt]);
}
dis[rt]=dis[rs[rt]]+1;
return rt;
}
void dfs(int x)
{
int size=e[x].size();
for(int i=0;i<size;i++)
{
int to=e[x][i];
root[to]=merge(root[to],root[x]);
dfs(to);
}
}
int main()
{
scanf("%d%d%lf",&n,&m,&E);
for(int i=1;i<=m;i++)
{
scanf("%d%d%lf",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
memset(d,127,sizeof(d));
d[n]=0;
q.push(make_pair(d[n],n));
while(!q.empty())
{
int now=q.top().second;
q.pop();
if(vis[now])
{
continue;
}
vis[now]=1;
for(int i=head[now];i;i=next[i])
{
if(i&1)
{
continue;
}
if(d[to[i]]>d[now]+val[i])
{
from[to[i]]=i-1;
d[to[i]]=d[now]+val[i];
q.push(make_pair(d[to[i]],to[i]));
}
}
}
for(int i=1;i<n;i++)
{
f[from[i]]=1;
e[to[from[i]]].push_back(i);
}
for(int i=1;i<=tot;i+=2)
{
if(!f[i])
{
root[to[i+1]]=merge(root[to[i+1]],build(val[i]+d[to[i]]-d[to[i+1]],to[i]));
}
}
dfs(n);
if(E-d[1]>=eps)
{
E-=d[1];
ans++;
}
if(root[1])
{
q.push(make_pair(v[root[1]],root[1]));
}
while(!q.empty())
{
int now=q.top().second;
double res=q.top().first;
if(E-d[1]-res<eps)
{
break;
}
q.pop();
E-=d[1]+res;
ans++;
if(ls[now])
{
q.push(make_pair(v[ls[now]]+res-v[now],ls[now]));
}
if(rs[now])
{
q.push(make_pair(v[rs[now]]+res-v[now],rs[now]));
}
if(root[end[now]])
{
q.push(make_pair(res+v[root[end[now]]],root[end[now]]));
}
}
printf("%d",ans);
}

$luogu$

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define pr pair<long double,int>
const long double eps = 1e-8;
using namespace std;
int tot;
int cnt;
int head[5010];
int to[400010];
int next[400010];
long double val[400010];
int root[5010];
int ls[4000010];
int rs[4000010];
int end[4000010];
long double v[4000010];
long double d[5010];
int dis[4000010];
int n,m;
long double E,z;
int x,y;
int vis[5010];
int from[5010];
int f[400010];
vector<int>e[5010];
int ans;
priority_queue< pr,vector<pr>,greater<pr> >q;
void add(int x,int y,long double z)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=z;
}
int build(long double val,int to)
{
int rt=++cnt;
v[rt]=val;
end[rt]=to;
dis[rt]=1;
return rt;
}
int merge(int x,int y)
{
if(!x||!y)
{
return x+y;
}
if(v[x]-v[y]>=eps)
{
swap(x,y);
}
int rt=++cnt;
ls[rt]=ls[x],rs[rt]=rs[x],end[rt]=end[x],dis[rt]=dis[x],v[rt]=v[x];
rs[rt]=merge(rs[rt],y);
if(dis[ls[rt]]<dis[rs[rt]])
{
swap(ls[rt],rs[rt]);
}
dis[rt]=dis[rs[rt]]+1;
return rt;
}
void dfs(int x)
{
int size=e[x].size();
for(int i=0;i<size;i++)
{
int to=e[x][i];
root[to]=merge(root[to],root[x]);
dfs(to);
}
}
int main()
{
scanf("%d%d%Lf",&n,&m,&E);
for(int i=1;i<=m;i++)
{
scanf("%d%d%Lf",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
for(int i=1;i<=n;i++)
{
d[i]=(long double)50000000000001.0;
}
d[n]=0;
q.push(make_pair(d[n],n));
while(!q.empty())
{
int now=q.top().second;
q.pop();
if(vis[now])
{
continue;
}
vis[now]=1;
for(int i=head[now];i;i=next[i])
{
if(i&1)
{
continue;
}
if(d[to[i]]+eps>d[now]+val[i])
{
from[to[i]]=i-1;
d[to[i]]=d[now]+val[i];
q.push(make_pair(d[to[i]],to[i]));
}
}
}
for(int i=1;i<n;i++)
{
f[from[i]]=1;
e[to[from[i]]].push_back(i);
}
for(int i=1;i<=tot;i+=2)
{
if(!f[i])
{
root[to[i+1]]=merge(root[to[i+1]],build(val[i]+d[to[i]]-d[to[i+1]],to[i]));
}
}
dfs(n);
if(E-d[1]>=eps)
{
E-=d[1];
ans++;
}
if(root[1])
{
q.push(make_pair(v[root[1]],root[1]));
}
while(!q.empty())
{
int now=q.top().second;
long double res=q.top().first;
if(E-d[1]-res<-eps)
{
break;
}
q.pop();
E-=d[1]+res;
ans++;
if(ls[now])
{
q.push(make_pair(v[ls[now]]+res-v[now],ls[now]));
}
if(rs[now])
{
q.push(make_pair(v[rs[now]]+res-v[now],rs[now]));
}
if(root[end[now]])
{
q.push(make_pair(res+v[root[end[now]]],root[end[now]]));
}
}
printf("%d",ans);
}

BZOJ1975[Sdoi2010]魔法猪学院——可持久化可并堆+最短路树的更多相关文章

  1. BZOJ1975 SDOI2010魔法猪学院(启发式搜索+最短路+堆)

    对反图跑最短路求出每个点到终点的最短路径,令其为估价函数大力A*,第k次到达某个点即是找到了到达该点的非严格第k短路,因为估价函数总是不大于实际值.bzoj可能需要手写堆.正解是可持久化可并堆,至今是 ...

  2. [BZOJ1975][SDOI2010]魔法猪学院(k短路,A*)

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2748  Solved: 883[Submit][Statu ...

  3. bzoj1975: [Sdoi2010]魔法猪学院【k短路&A*算法】

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2446  Solved: 770[Submit][Statu ...

  4. BZOJ1975 [Sdoi2010]魔法猪学院

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  5. 洛谷P2483 Bzoj1975 [SDOI2010]魔法猪学院

    题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的:元素与 ...

  6. BZOJ1975 [Sdoi2010]魔法猪学院 k短路

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1975 题意概括 给出一个无向图,让你走不同的路径,从1到n,路径长度之和不超过E,求最大路径条数. ...

  7. 【k短路&A*算法】BZOJ1975: [Sdoi2010]魔法猪学院

    Description 找出1~k短路的长度.   Solution k短路的求解要用到A*算法 A*算法的启发式函数f(n)=g(n)+h(n) g(n)是状态空间中搜索到n所花的实际代价 h(n) ...

  8. BZOJ1975 SDOI2010魔法猪学院

    就是个A*,具体原理可以参考VANE的博文. 正解要手写堆,会被卡常,也许哪天我筋搭错了写一回吧. #include<bits/stdc++.h> #define r register u ...

  9. 【BZOJ1975】[Sdoi2010]魔法猪学院 A*

    [BZOJ1975][Sdoi2010]魔法猪学院 Description iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪 ...

随机推荐

  1. SAP 用户参数 ME_USE_GRID

    SAP 用户参数 ME_USE_GRID SAP的一些标准报表格式极其不友好,如果不做特殊参数设定,报表使用起来很不方便.我们可以通过设置user parameter的方式,改变一些报表的显示格式,让 ...

  2. Linux 监控CPU、内存、IO

    安装说明 # tar zxvf sysstat-11.5.6.tar.gz# cd sysstat-11.5.6# ./configure# make# make install 备注:若在linux ...

  3. java新知识系列 一

    内联函数: 所谓内联函数就是指函数在被调用的地方直接展开,编译器在调用时不用像一般函数那样,参数压栈,返回时参数出栈以及资源释放等,这样提高了程序执行速度. 对应Java语言中也有一个关键字final ...

  4. IPD体系向敏捷开发模式转型实施成功的四个关键因素

    文/杨学明  集成产品开发(IPD).集成能力成熟度模型(CMMI).敏捷开发(Agile Development)是当前国内外企业产品研发管理的最常用的3种模式.随着创新环境的快速发展,许多企业都会 ...

  5. django源码分析 请求流程

    一.从浏览器发出一个请求,到返回响应内容,这个过程是怎么样的? 1. 浏览器解析输入的url 2. 查找url对应的ip地址 3. 通过ip地址访问我们的服务器 1.  请求进入wsgi服务器(我在这 ...

  6. Python第七天 函数 函数参数 函数里的变量 函数返回值 多类型传值 函数递归调用 匿名函数 内置函数

    Python第七天   函数  函数参数   函数里的变量   函数返回值  多类型传值     函数递归调用   匿名函数   内置函数 目录 Pycharm使用技巧(转载) Python第一天   ...

  7. SQLServer之创建分区视图

    分区视图定义 分区视图是通过对成员表使用 UNION ALL 所定义的视图,这些成员表的结构相同,但作为多个表分别存储在同一个 SQL Server实例中,或存储在称为联合数据库服务器的自主 SQL ...

  8. markdown小知识总结

    字体.字号.颜色 但如果我们想修改文字大小/颜色/字体,就要用font标签,代码如下: 宋体大小为2的字 color代表字体颜色(要用16进制颜色值),size代表文字大小,face代表字体 效果展示 ...

  9. 明天研究下jpa直接像django一样生成

    https://blog.csdn.net/yztezhl/article/details/79390714 自动生成 教程-- https://blog.csdn.net/mxjesse/artic ...

  10. Openssl x509命令

    一.简介 x509指令是一个功能很丰富的证书处理工具.可以用来显示证书的内容,转换其格式,给CSR签名等 二.语法 openssl x509 [-inform DER|PEM|NET] [-outfo ...