动态规划----最长公共子序列(LCS)问题
题目:
求解两个字符串的最长公共子序列。如 AB34C 和 A1BC2 则最长公共子序列为 ABC。
思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归。也可以使用动态规划,在建表的时候一定要注意初始化以及在发现规律的时候一定要想怎么利用前面已经算过的结果来得到现在的结果,或者利用其他的一些规律来发现能够解题的规律。
图中单元格需要填上相应的数字(这个数字就是dp[i][j]的定义,记录的LCS的长度值)。可以发现规律,简单来说:如果横竖(i,j)对应的两个元素相等,该格子的值 = c[i-1,j-1] + 1。如果不等,取c[i-1,j] 和 c[i,j-1]的最大值。
当得到完整的DP表之后,我们可以通过倒推来得到相应的子序列,有时S1和S2的LCS并不是只有1个,本题并不是着重说要输出两个序列的所有LCS,只是要输出其中一个LCS。
代码:
import java.util.ArrayList; public class LCS {
public static void main(String[] args) {
ArrayList ans = dfs("AB34C", "A1BC2");
System.out.println(ans); // 输出 [A, B, C]
System.out.println(dfs("3563243", "513141")); // 输出 [5, 3, 4]
System.out.println(solution("3069248", "513164318")); // 输出 [3, 6, 4, 8]
System.out.println(solution("123", "456")); // 输出为空 } // 双重循环递归
static ArrayList<Character> dfs(String s1, String s2) {
int len1 = s1.length();
int len2 = s2.length();
ArrayList<Character> ans = new ArrayList<>();
for (int i = 0; i < len1; i++) {
// 求以i字符开头的公共子序列
ArrayList<Character> list = new ArrayList<>();
// 和s2的每个字符比较
for (int j = 0; j < len2; j++) {
if (s1.charAt(i) == s2.charAt(j)) {// 如果相同
list.add(s1.charAt(i));
list.addAll(dfs(s1.substring(i + 1), s2.substring(j + 1)));
break;
}
}
if (list.size() > ans.size()) {
ans = list;
}
}
return ans;
} /**
* 生成动规表
*/
static String solution(String s1, String s2) {
int len1 = s1.length();
int len2 = s2.length();
int[][] dp = new int[len1 + 1][len2 + 1]; // 动规数组
int flag = 0;
// 初始化第一列
// O(M)
for (int i = 1; i <= len1; i++) {
if (flag == 1) {
dp[i][1] = 1;
} else if (s1.charAt(i - 1) == s2.charAt(0)) {
dp[i][1] = 1;
flag = 1;
} else {
dp[i][1] = 0;
}
} flag = 0;
// 初始化第一行
// O(N)
for (int j = 1; j <= len2; j++) {
if (flag == 1) {
dp[1][j] = 1;
} else if (s2.charAt(j - 1) == s1.charAt(0)) {
dp[1][j] = 1;
flag = 1;
} else {
dp[1][j] = 0;
}
}
// O(M*N)
for (int i = 2; i <= len1; i++) { // M
for (int j = 2; j <= len2; j++) { // N
int maxOfLeftAndUp = Math.max(dp[i - 1][j], dp[i][j - 1]);
if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
// dp[i][j] = Math.max(maxOfLeftAndUp, dp[i - 1][j - 1] + 1);
dp[i][j] = dp[i - 1][j - 1] + 1;// 这样也是对的……
} else {
dp[i][j] = maxOfLeftAndUp;
}
}
}
return parseDp(dp, s1, s2);
} /**
* 解析动态规划表,得到最长公共子序列
*/
private static String parseDp(int[][] dp, String s1, String s2) {
int M = s1.length();
int N = s2.length();
StringBuilder sb = new StringBuilder();
while (M > 0 && N > 0) {
// 比左和上大,一定是当前位置的字符相等
if (dp[M][N] > Math.max(dp[M - 1][N], dp[M][N - 1])) {
sb.insert(0, s1.charAt(M - 1));
M--;
N--;
} else { // 一定选择的是左边和上边的大者
if (dp[M - 1][N] > dp[M][N - 1]) {
M--; // 往上移
} else {
N--; // 往左移
}
}
} return sb.toString();
}
}
动态规划----最长公共子序列(LCS)问题的更多相关文章
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
- 动态规划——最长公共子序列LCS及模板
摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字 ...
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
- linux文件删除原理
文件删除的原理 linux的文件名是存在父目录的block里面的,并指向这个文件的inode节点,这个文件的inode节点在标记指向存放这个文件的block的数据块.我们删除文件,实际上不是清除ino ...
- ****微信小程序架构解析
| 导语 微信小程序的公测掀起了学习小程序开发的浪潮,天生跨平台,即用即走.媲美原生体验.完善的文档.高效的开发框架,小程序给开发者带来了很多惊喜.通过这篇文章和大家一起分析小程序的架构,分享开发 ...
- 安装SSL证书 and 根域名跳转www域名
1.安装自签证书 自签证书也就是不被公网认可的证书,可在局域网内进行签名认证,其12306也是自签证书,通过证书+nginx代理web服务器 可以实现https连接 一.使用OpenSSL创建证书 ...
- Kali Linux更新后无法启动解决了
Kali Linux更新后无法启动解决了 1月3日,Kali Linux从上游Debian引入systemd组件的升级版本240-2.一旦更新该版本,就可能造成系统无法启动,直接进入(initra ...
- <算法图解>读书笔记:第2章 选择排序
第2章 选择排序 2.1 内存的工作原理 需要将数据存储到内存时,请求计算机提供存储空间,计算机会给一个存储地址.需要存储多项数据时,有两种基本方式-数组和链表 2.2 数组和链表 2.2.1 链表 ...
- 【转载】JAVA基础复习与总结<三> Object类的常用方法
Object类是一个特殊的类,是所有类的父类,如果一个类没有用extends明确指出继承于某个类,那么它默认继承Object类.这里主要总结Object类中的三个常用方法:toString().equ ...
- 编程菜鸟的日记-初学尝试编程-C++ Primer Plus 第6章编程练习6
#include <iostream> #include <string> using namespace std; const int MSIZE=100; struct j ...
- 一. 优化小程序自身的Storage
小程序中的存储只有 Storage ,特性如下: 上限为 10MB 以用户纬度隔离,同一个设备,A 无法访问 B 用户的数据. 持久缓存,只有在用户关掉小程序才会删除,如果空间不足,会进行 LRU , ...
- XGBoost原理和公式推导
本篇文章主要介绍下Xgboost算法的原理和公式推导.关于XGB的一些应用场景在此就不赘述了,感兴趣的同学可以自行google.下面开始: 1.模型构建 构建最优模型的方法一般是最小化训练数据的损失 ...
- jieba中文分词
jieba中文分词¶ 中文与拉丁语言不同,不是以空格分开每个有意义的词,在我们处理自然语言处理的时候,大部分情况下,词汇是对句子和文章的理解基础.因此需要一个工具去把完整的中文分解成词. ji ...