假设我们的数据集中有缺失值,该如何进行处理呢?

丢弃缺失值的行或列

首先我们定义了数据集的缺失值:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) data.iloc[0, 1] = np.nan
data.iloc[1, 2] = np.nan print("data:")
print(data)

这里缺失值用np.nan来设置,输出为:

data:
A B C D
2017-01-08 0 NaN 2.0 3
2017-01-09 4 5.0 NaN 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23

丢弃缺失值数据

可以使用dropna函数把拥有缺失值数据的行或列进行丢弃。

我们这里以丢弃掉拥有缺失值行作为例子:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) data.iloc[0, 1] = np.nan
data.iloc[1, 2] = np.nan print("data:")
print(data) print("处理结果:")
print(data.dropna(axis=0))

输出为:

data:
A B C D
2017-01-08 0 NaN 2.0 3
2017-01-09 4 5.0 NaN 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23
处理结果:
A B C D
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23

这样把拥有NaN的2017-01-08和2017-01-09行给丢弃掉了。

dropna所拥有的参数有:

axis:0=按行进行删除,1=按列进行删除

how:'all'=丢掉全为NaN的行,'any'=丢弃只要此行中出现一个NaN的字段就丢弃

把缺失值替换成其它值

在处理缺失值时,我们也可以把缺失值替换成其它值,具体是通过使用fillna函数来实现的。

比如,我们想把缺失值设置成-1:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) data.iloc[0, 1] = np.nan
data.iloc[1, 2] = np.nan print("data:")
print(data) ret = data.fillna(-1)
print("处理结果:")
print(ret)

输出为:

data:
A B C D
2017-01-08 0 NaN 2.0 3
2017-01-09 4 5.0 NaN 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23
处理结果:
A B C D
2017-01-08 0 -1.0 2.0 3
2017-01-09 4 5.0 -1.0 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23

检查是否存在缺失数据

isnull()函数用来检查是否存在缺失值,如果存在缺失值,则对应位置就会显示True:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) data.iloc[0, 1] = np.nan
data.iloc[1, 2] = np.nan print("data:")
print(data) ret = data.isnull()
print("处理结果:")
print(ret)

输出为:

data:
A B C D
2017-01-08 0 NaN 2.0 3
2017-01-09 4 5.0 NaN 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23
处理结果:
A B C D
2017-01-08 False True False False
2017-01-09 False False True False
2017-01-10 False False False False
2017-01-11 False False False False
2017-01-12 False False False False
2017-01-13 False False False False

如果我们想要知道整个的数据中是否存在缺失值,例子如下:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) data.iloc[0, 1] = np.nan
data.iloc[1, 2] = np.nan print("data:")
print(data) ret = np.any(data.isnull() == True) print("处理结果:")
print(ret)

输出为:

data:
A B C D
2017-01-08 0 NaN 2.0 3
2017-01-09 4 5.0 NaN 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23
处理结果:
True

pandas处理丢失数据-【老鱼学pandas】的更多相关文章

  1. pandas基本介绍-【老鱼学pandas】

    前面我们学习了numpy,现在我们来学习一下pandas. Python Data Analysis Library 或 pandas 主要用于处理类似excel一样的数据格式,其中有表头.数据序列号 ...

  2. pandas设置值-【老鱼学pandas】

    本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改. 对某个值进行修改 例如,我们想对数据集中第2行第2列的数据进行修改: import pandas as pd import ...

  3. pandas合并数据集-【老鱼学pandas】

    有两个数据集,我们想把他们的结果根据相同的列名或索引号之类的进行合并,有点类似SQL中的从两个表中选择出不同的记录并进行合并返回. 合并 首先准备数据: import pandas as pd imp ...

  4. pandas画图-【老鱼学pandas】

    本节主要讲述如何把pandas中的数据用图表的方式显示在屏幕上,有点类似在excel中显示图表. 安装matplotlib 为了能够显示图表,首先需要安装matplotlib库,安装方法如下: pip ...

  5. pandas选择数据-【老鱼学pandas】

    选择列 根据列名来选择某列的数据 import pandas as pd import numpy as np dates = pd.date_range("2017-01-08" ...

  6. pandas导入导出数据-【老鱼学pandas】

    pandas可以读写如下格式的数据类型: 具体详见:http://pandas.pydata.org/pandas-docs/version/0.20/io.html 读取csv文件 我们准备了一个c ...

  7. pandas合并merge-【老鱼学pandas】

    本节讲述对于两个数据集按照相同列的值进行合并. 首先定义原始数据: import pandas as pd import numpy as np data0 = pd.DataFrame({'key' ...

  8. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

  9. 二分类问题续 - 【老鱼学tensorflow2】

    前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=51 ...

随机推荐

  1. [ffmpeg] 音频样本

    不仅限于ffmpeg,音频采样所得的PCM都含有三个要素:声道(channel).采样率(sample rate).样本格式(sample format). 声道 当人听到声音时,能对声源进行定位,那 ...

  2. 五、Java多人博客系统-2.0版本-数据库设计

    数据库设计表如下:文章类别表.文章表.评论表.留言表. 文章列表表:存放文章类别,首页菜单生成也是从这个表取的. 文章表:存放文章标题.发表时间.内容等信息. 评论表:文章评论内容. 留言表:用户发表 ...

  3. 【模板】2-SAT 问题

    [传送门] 分析 按照逻辑关系建图,跑tarjan,如果上下点在一个环中,说明不可能,不然就可能. 代码 #include <bits/stdc++.h> #define ll long ...

  4. 一丢丢学习之webpack4 + Vue单文件组件的应用

    之前刚学了一些Vue的皮毛于是写了一个本地播放器https://github.com/liwenchi123000/Local-Music-Player,如果觉得ok的朋友可以给个star. 就是很简 ...

  5. zabbix存储history_text

    有一个监控项存储一个目录的所有文件(递归)信息,字符数量比较大,history_str表的value的字段字符数限制为255长度,所以就想存储到history_text表中,在最新数据中一直显示不出新 ...

  6. SQL随记(一)

    1.关于define表示定义 2.sql%rowcount用于记录修改的条数,必须放在一个CUD语句后面执行,无法在select中使用. 3.两种调用过程的关键字:exec和call 两者区别: (1 ...

  7. 从线程池到synchronized关键字详解

    线程池 BlockingQueue synchronized volatile 前段时间看了一篇关于"一名3年工作经验的程序员应该具备的技能"文章,倍受打击.很多熟悉而又陌生的知识 ...

  8. python去除html标签的几种方法

    import re from bs4 import BeautifulSoup from lxml import etree html = '<p>你好</p><br/& ...

  9. ORA-28000错误的原因及解决办法

    当使用SQL*Plus登录时,Oracle数据库时提示“ORA-28000:帐号被锁定”. 导致出现改错误的原因是:在oracle database 11g中,默认在default概要文件中设置了“F ...

  10. CMDB服务器管理系统【s5day87】:需求讨论-设计思路

    自动化运维平台愿景和服务器管理系统背景 服务器管理系统 管理后台示例 需求和设计 为什么开发服务器管理系统? 背景: 原来是用Excel维护服务器资产,samb服务[多个运维人员手动维护] 搭建运维自 ...