假设我们的数据集中有缺失值,该如何进行处理呢?

丢弃缺失值的行或列

首先我们定义了数据集的缺失值:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) data.iloc[0, 1] = np.nan
data.iloc[1, 2] = np.nan print("data:")
print(data)

这里缺失值用np.nan来设置,输出为:

data:
A B C D
2017-01-08 0 NaN 2.0 3
2017-01-09 4 5.0 NaN 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23

丢弃缺失值数据

可以使用dropna函数把拥有缺失值数据的行或列进行丢弃。

我们这里以丢弃掉拥有缺失值行作为例子:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) data.iloc[0, 1] = np.nan
data.iloc[1, 2] = np.nan print("data:")
print(data) print("处理结果:")
print(data.dropna(axis=0))

输出为:

data:
A B C D
2017-01-08 0 NaN 2.0 3
2017-01-09 4 5.0 NaN 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23
处理结果:
A B C D
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23

这样把拥有NaN的2017-01-08和2017-01-09行给丢弃掉了。

dropna所拥有的参数有:

axis:0=按行进行删除,1=按列进行删除

how:'all'=丢掉全为NaN的行,'any'=丢弃只要此行中出现一个NaN的字段就丢弃

把缺失值替换成其它值

在处理缺失值时,我们也可以把缺失值替换成其它值,具体是通过使用fillna函数来实现的。

比如,我们想把缺失值设置成-1:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) data.iloc[0, 1] = np.nan
data.iloc[1, 2] = np.nan print("data:")
print(data) ret = data.fillna(-1)
print("处理结果:")
print(ret)

输出为:

data:
A B C D
2017-01-08 0 NaN 2.0 3
2017-01-09 4 5.0 NaN 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23
处理结果:
A B C D
2017-01-08 0 -1.0 2.0 3
2017-01-09 4 5.0 -1.0 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23

检查是否存在缺失数据

isnull()函数用来检查是否存在缺失值,如果存在缺失值,则对应位置就会显示True:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) data.iloc[0, 1] = np.nan
data.iloc[1, 2] = np.nan print("data:")
print(data) ret = data.isnull()
print("处理结果:")
print(ret)

输出为:

data:
A B C D
2017-01-08 0 NaN 2.0 3
2017-01-09 4 5.0 NaN 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23
处理结果:
A B C D
2017-01-08 False True False False
2017-01-09 False False True False
2017-01-10 False False False False
2017-01-11 False False False False
2017-01-12 False False False False
2017-01-13 False False False False

如果我们想要知道整个的数据中是否存在缺失值,例子如下:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) data.iloc[0, 1] = np.nan
data.iloc[1, 2] = np.nan print("data:")
print(data) ret = np.any(data.isnull() == True) print("处理结果:")
print(ret)

输出为:

data:
A B C D
2017-01-08 0 NaN 2.0 3
2017-01-09 4 5.0 NaN 7
2017-01-10 8 9.0 10.0 11
2017-01-11 12 13.0 14.0 15
2017-01-12 16 17.0 18.0 19
2017-01-13 20 21.0 22.0 23
处理结果:
True

pandas处理丢失数据-【老鱼学pandas】的更多相关文章

  1. pandas基本介绍-【老鱼学pandas】

    前面我们学习了numpy,现在我们来学习一下pandas. Python Data Analysis Library 或 pandas 主要用于处理类似excel一样的数据格式,其中有表头.数据序列号 ...

  2. pandas设置值-【老鱼学pandas】

    本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改. 对某个值进行修改 例如,我们想对数据集中第2行第2列的数据进行修改: import pandas as pd import ...

  3. pandas合并数据集-【老鱼学pandas】

    有两个数据集,我们想把他们的结果根据相同的列名或索引号之类的进行合并,有点类似SQL中的从两个表中选择出不同的记录并进行合并返回. 合并 首先准备数据: import pandas as pd imp ...

  4. pandas画图-【老鱼学pandas】

    本节主要讲述如何把pandas中的数据用图表的方式显示在屏幕上,有点类似在excel中显示图表. 安装matplotlib 为了能够显示图表,首先需要安装matplotlib库,安装方法如下: pip ...

  5. pandas选择数据-【老鱼学pandas】

    选择列 根据列名来选择某列的数据 import pandas as pd import numpy as np dates = pd.date_range("2017-01-08" ...

  6. pandas导入导出数据-【老鱼学pandas】

    pandas可以读写如下格式的数据类型: 具体详见:http://pandas.pydata.org/pandas-docs/version/0.20/io.html 读取csv文件 我们准备了一个c ...

  7. pandas合并merge-【老鱼学pandas】

    本节讲述对于两个数据集按照相同列的值进行合并. 首先定义原始数据: import pandas as pd import numpy as np data0 = pd.DataFrame({'key' ...

  8. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

  9. 二分类问题续 - 【老鱼学tensorflow2】

    前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=51 ...

随机推荐

  1. 七、Java多人博客系统-2.0版本-docker部署

    docker是当下很热门的技术,是对之前的部署系统方式的彻底改变.之前部署系统,需要安装数据库.初始化数据库,安装jdk,配置jdk,部署应用程序,修改配置文件等,很繁琐.一般现场运维人员很难搞定,现 ...

  2. Android插件化 学习

    原文:http://weishu.me/2016/01/28/understand-plugin-framework-overview/ 代码:https://github.com/tiann/und ...

  3. 第六十五天 js操作

    1.闭包 // 函数的嵌套定义,定义在内部的函数都称之为 闭包 // 1.一个函数要使用另一个函数的局部变量 // 2.闭包会持久化包裹自身的函数的局部变量 // 3.解决循环绑定 function ...

  4. 【BZOJ5499】[2019省队联测]春节十二响(贪心)

    [BZOJ5499][2019省队联测]春节十二响(贪心) 题面 BZOJ 洛谷 题解 如果是一条折链,显然维护两侧的值,每次两个堆分别弹出一个\(max\)然后合并一下,最后再放回去就可以了. 那么 ...

  5. postgreSQL学习(二):pgsql的一些基础操作

    在上一篇文章中我们学习了怎么安装pgsql,安装好了后,我们来学习一下怎么对pgsql进行创建操作以及相关的crud的操作啦 一 创建数据库 $ createdb test 然后你可能会遇到如下的错误 ...

  6. java实现sftp客户端上传文件夹的功能

    使用的jar: <dependencies> <dependency> <groupId>jsch</groupId> <artifactId&g ...

  7. Tensor是神马?为什么还会Flow?

    https://baijiahao.baidu.com/s?id=1568147583188426&wfr=spider&for=pc 也许你已经下载了TensorFlow,而且准备开 ...

  8. 如何将JPG格式的图片转换成PNG格式

    study from : https://jingyan.baidu.com/article/6079ad0e63a4fc28ff86db37.html

  9. Springboot 2.返回cookies信息的get接口开发 和 带cookis去请求

    首先要有一个启动类,默认的启动类的名字就是Application.java.启动的时候直接右键点击run就可以 Application.java: import org.springframework ...

  10. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...