题解:

挺好的一道题

两次容斥+一次二项式反演

首先考虑部分分不存在k的限制

然后我们发现两维之间是互相独立的

下面以x轴为例

然后问题就变成了

$$\sum\limits_{i=1}^{R} {xi}=k (xi<=Mx)$$

这个东西是个经典问题,容斥做就可以了

$$h(R)=\sum\limits_{i=0}^{R}{{(-1)}^{i}*C_R^i *p(i)}$$

$$p(x)= C_{Tx-(Mx+1)*x+R-1}^{R-1}$$

但是这样还不对,因为走$(0,0)$是不合法的

所以我们求出来的$h(R)$是至多走了$R$步的方案数

令$g(x)$表示正好走了$x$步$(0,0)$的方案数

$$h(R)=\sum\limits_{i=0}^{R} { C_R^i *g(i) }$$

由这个可以二项式反演得出$g(R)$

$$g(R)=\sum\limits_{i=0}^{R} { {(-1)}^{R-i} * C_R^i *h(i) }$$

这个复杂度是$O(R*MIN(R,Tx/Mx))$的

现在加入了k个不能走的限制

显然我们需要继续容斥

因为都是$g$的倍数所以可以$/g$后进行

$dp[i][j]$表示选出$i$个和为$j$的方案数

$$ans=\sum\limits_{i=0}^{n} { {(-1)}^{i} \sum\limits_{j=0}^{100} {dp[i][j]* C_R^i *calc(Tx-j*G,R-i)} }$$

时间复杂度的话

注意到因为$g>=1e4$,所以$Mx$也要$>=1e4$

那么复杂度就是$O(50*(1e6/1e4)*(1e6/1e4)*1e3)$

并且这个很显然是不满的

LOJ#6374 网格的更多相关文章

  1. 【LOJ#6374】网格(二项式反演,容斥)

    [LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...

  2. LOJ #6374「SDWC2018 Day1」网格

    模拟赛考过的题 当时太菜了现在也一样只拿到了$ 30$分 回来填个坑 LOJ #6374 题意 你要从$ (0,0)$走到$ (T_x,T_y)$,每次移动的坐标增量满足$ 0 \leq \Delta ...

  3. LOJ 546: 「LibreOJ β Round #7」网格图

    题目传送门:LOJ #546. 题意简述: 题目说的很清楚了. 题解: 将不包含起点或障碍物的连续的行或列缩成一行或一列,不会影响答案. 处理过后,新的网格图的行数和列数最多为 \(2k + 3\). ...

  4. LOJ#2084. 「NOI2016」网格

    $n,m \leq 1e9$,$n*m$的网格中有$c \leq 1e5$个是黑的,其他是白的.问:使至少两个白的不连通,最少需要再把几个白的涂黑. 可以发现答案是-1,0,1,2啦.-1要么没白的, ...

  5. 【LOJ】#2084. 「NOI2016」网格

    题解 之前用的mapTLE了,今天用了个hash把题卡了过去,AC数++ 我们只要保留一个点为中心周围5 * 5个格子就可以 如果一个点周围5*5个格子有两个不连通,那么显然输出0 如果一个出现了一个 ...

  6. Loj #2321. 「清华集训 2017」无限之环

    Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋 ...

  7. loj 3090 「BJOI2019」勘破神机 - 数学

    题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网 ...

  8. [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞

    [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...

  9. Loj #2719. 「NOI2018」冒泡排序

    Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排 ...

随机推荐

  1. jmeter笔记(7)--参数化--用户定义的变量

    录制的脚本里面有很多的相同的数据的时候,比如服务器ip,端口号等,当更换服务器的时候,就需要手动的修改脚本里面对应的服务器ip和端口号,比较繁琐,jmeter里面有一个用户自定义变量能很好的解决这个问 ...

  2. django 4.get接口开发

    根据上一篇文章,有post,那么就有get请求,其余部分不变,就是把post换成get就可以. #views.py from django.http.response import HttpRespo ...

  3. 转载:curl 模拟请求

    一般情况下我们会在网页上请求后台接口,但是对于需要进行多次测试的人来说,每一次都要在网页上模拟请求,是存在很大局限性的.因此,我们需要学会模拟请求,以达到跟实际请求一样的效果. 1. curl的用法 ...

  4. layui模板引擎

    <在模板中调用js方法> 1.js代码 layui.define(['laytpl', 'jquery'], function (exports) { var $ = layui.jque ...

  5. google搜索指南

    常用搜索技巧 搜索社交媒体@ @twitter 搜索特定价格$ $400 搜素标签# #tag 排除特定词,在词前加减号- -except 搜索完全匹配词,加双引号"" " ...

  6. Java虚拟机内存溢出异常--《深入理解Java虚拟机》学习笔记及个人理解(三)

    Java虚拟机内存溢出异常--<深入理解Java虚拟机>学习笔记及个人理解(三) 书上P39 1. 堆内存溢出 不断地创建对象, 而且保证创建的这些对象不会被回收即可(让GC Root可达 ...

  7. AngularJs实现表单验证

    首先,我们应该知道,表单中,常用的验证操作有: $dirty 表单有填写记录 $valid 字段内容合法的 $invalid 字段内容是非法的 $pristine 表单没有填写记录 $error 表单 ...

  8. C#创建 WebApi 项目

    做web api 可以参考一下网友 C#进阶系列——WebApi 接口参数不再困惑:传参详解 - 懒得安分 - 博客园https://www.cnblogs.com/landeanfen/p/5337 ...

  9. static 关键字 静态成员变量及静态成员函数

    static类成员 类成员类似于C语言的全局变量,但是与全局变量又有所不同,例如,全局变量是可以被任何的用户代码所修改,而且全局变量破坏了对象的封装性. 使用类的 static 成员的优点 使用 st ...

  10. Spring Cloud 2-Hystrix DashBoard仪表盘(五)

    Spring Cloud  Hystrix DashBoard  1.监控系统配置 pom.xml application.yml Application.java 2.被监控服务配置 pom.xml ...