LOJ 2548 「JSOI2018」绝地反击 ——二分图匹配+网络流手动退流
题目:https://loj.ac/problem/2548
如果知道正多边形的顶点,就是二分答案、二分图匹配。于是写了个暴力枚举多边形顶点的,还很愚蠢地把第一个顶点枚举到 2*pi ,其实只要 \( \frac{2*pi}{n} \) 就行了。
总之能得10分。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
using namespace std;
db Mx(db a,db b){return a>b?a:b;}
db Mn(db a,db b){return a<b?a:b;}
const int N=,M=N*N;
const db eps=1e-,Pls=1e-,pi2=*acos(-);
int dcmp(db x)
{ if(x>eps)return ;if(x<-eps)return -;return ;} int n,R; db dis[N][N];
int hd[N],xnt,to[M],nxt[M],per[N],dfn[N],tim;
struct Node{ db x,y;}a[N],b[N];
db Sqr(db x){return x*x;}
db get_dis(Node u,Node v)
{return sqrt(Sqr(u.x-v.x)+Sqr(u.y-v.y));}
void add(int x,int y){to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;}
bool xyl(int cr)
{
for(int i=hd[cr],v;i;i=nxt[i])
if(dfn[v=to[i]]!=tim)
{
dfn[v]=tim;
if(!per[v]||xyl(per[v]))
{ per[v]=cr; return true;}
}
return false;
}
bool chk(db lm)
{
memset(hd,,sizeof hd); xnt=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(dcmp(dis[i][j]-lm)<=)add(i,j);//<= not <
memset(per,,sizeof per);memset(dfn,,sizeof dfn);//dfn!!
for(int i=;i<=n;i++)
{tim=i; if(!xyl(i))return false;}
return true;
}
int main()
{
scanf("%d%d",&n,&R);
for(int i=;i<=n;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
db ans=;
for(db alp=;alp<=pi2;alp+=Pls)
{
db bs=*acos(-)/n;
for(int i=;i<=n;i++)
{
alp+=bs; if(alp>pi2)alp-=pi2;
b[i].x=R*cos(alp); b[i].y=R*sin(alp);
}
db l=,r=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=get_dis(a[i],b[j]),r=Mx(r,dis[i][j]);
r=Mn(r+eps,ans);
while(r-l>=eps)
{
db mid=(l+r)/;
if(chk(mid))ans=mid,r=mid-eps;
else l=mid+eps;
}
}
printf("%.8f\n",ans);
return ;
}
题解:https://www.cnblogs.com/cjyyb/p/10420259.html
首先,把二分放在外面,已知二分值,再考虑是否存在一个合法多边形。
已知二分值,一个点的可匹配范围是圆弧上一段区间。
合法方案可以转动多边形使得某个顶点卡在某个范围的边界上。一共有 O(n) 个边界,让多边形的第一个点分别卡上去即可。O( n4logn )。
多边形第一个点的转动角度可以对 \( \frac{2*pi}{n} \) 取模。
因为多边形两点在圆弧上的间距是 \( \frac{2*pi}{n} \) ,转动角度又小于 \( \frac{2*pi}{n} \) ,所以不管怎么转,对一个点的匹配最多导致一条边被删除/加入。
每个点产生两个转动角度,可知一个使得可以多匹配一个顶点,另一个使得少匹配一个顶点;角度取模后排序,每次把一个角度的影响加入后,整个图多/少了一条边。
删掉一条边 ( u , v ) 的话,看看它如果有流量,就手动给源点到 u 的边、 v 到汇点的边改一下流量。注意给总流量减 1 。
每次删/加边之后跑一次网络流即可。注意删边也要跑。
找一个点在圆弧上的区间,用余弦公式可知 R , mid , dis 围成的三角形的一个角的 cos 。
要特判一个点可以走到圆上任一点,还要特判走不到圆上的任一点。不然 acos( ) 会有 nan 。
代码里是把圆的 x 轴上的那个点看作第 n 个点。转动看作顺时针转动。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
using namespace std;
int Mx(int a,int b){return a>b?a:b;}
int Mn(int a,int b){return a<b?a:b;}
db Sqr(db x){return x*x;}
const int N=,N2=N<<,M=N*N2;
const db jmp=1e-,eps=1e-,pi2=*acos(-);
int dcmp(db x)
{if(x>eps)return ;if(x<-eps)return -;return ;} int n,r2,nR,en; db x[N],y[N],alp[N],dis[N],d2[N],bs;
int hd[N2],cur[N2],xnt,to[M],nxt[M],cap[M],dfn[N2],q[N2];//N2
struct Node{
db x;int u,v;bool fx;
Node(db x=,int u=,int v=,bool f=):
x(x),u(u),v(v),fx(f) {}
bool operator< (const Node &b)const
{return x<b.x;}
}t[N<<];
void add(int x,int y)
{
to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;cap[xnt]=;
to[++xnt]=x;nxt[xnt]=hd[y];hd[y]=xnt;cap[xnt]=;
}
void del(int x,int y,int &flow)
{
int tp=;
for(int i=hd[x],pr;i;pr=i,i=nxt[i])
if(to[i]==y)
{if(i==hd[x])hd[x]=nxt[i]; else nxt[pr]=nxt[i]; break;}
for(int i=hd[y],pr;i;pr=i,i=nxt[i])
if(to[i]==x)
{ if(i==hd[y])hd[y]=nxt[i]; else nxt[pr]=nxt[i];
tp=cap[i]; break;}
if(!tp)return; flow--;
for(int i=hd[x];i;i=nxt[i])
if(to[i]==){ cap[i]=;cap[i^]=;break;}
for(int i=hd[y];i;i=nxt[i])
if(to[i]==en){ cap[i]=;cap[i^]=;break;}
}
bool bfs()
{
int he=,tl=; memset(dfn,,sizeof dfn);
dfn[]=; q[++tl]=;
while(he<tl)
{
int k=q[++he];
for(int i=hd[k],v;i;i=nxt[i])
if(cap[i]&&!dfn[v=to[i]])
dfn[v]=dfn[k]+, q[++tl]=v;
}
return dfn[en];
}
int dinic(int cr,int flow)
{
if(cr==en)return flow;
int use=;
for(int &i=cur[cr],v;i;i=nxt[i])
if(cap[i]&&dfn[v=to[i]]==dfn[cr]+)
{
int tmp=dinic(v,Mn(flow-use,cap[i]));
if(!tmp)dfn[v]=;
use+=tmp; cap[i]-=tmp; cap[i^]+=tmp;
if(use==flow)return use;
}
return use;
}
bool chk(db mid)
{
xnt=;memset(hd,,sizeof hd); int tot=;
db m2=Sqr(mid);
for(int i=;i<=n;i++)
{
if(mid>=dis[i]+nR)
{ for(int j=;j<=n;j++)add(i,j+n); continue;}
if(mid<dis[i]-nR)continue;////
db fx=acos((r2+d2[i]-m2)/(*nR*dis[i]));
db l=alp[i]-fx, r=alp[i]+fx;
if(l<)l+=pi2; if(r<)r+=pi2;//r<0 for alp<0
int L=l/bs, R=r/bs;//bs not pi2
//if(!L)L=n; if(!R)R=n;//not for l-L*bs
t[++tot]=Node(l-L*bs,i,L?L:n,);//bs not pi2
t[++tot]=Node(r-R*bs,i,R?R:n,);
if(!L)L=n; if(!R)R=n;//
if(L<=R)
for(int j=L+;j<=R;j++)add(i,j+n);
else
{ for(int j=L+;j<=n;j++)add(i,j+n);
for(int j=;j<=R;j++)add(i,j+n);}
}
int flow=;
for(int i=;i<=n;i++)add(,i),add(i+n,en);
while(bfs())memcpy(cur,hd,sizeof hd),flow+=dinic(,n);
if(flow==n)return true;
sort(t+,t+tot+);
for(int i=;i<=tot;i++)
if(!t[i].fx)
{
add(t[i].u,t[i].v+n);
if(bfs())memcpy(cur,hd,sizeof hd),flow+=dinic(,n);
if(flow==n)return true;
}
else
{
del(t[i].u,t[i].v+n,flow);
if(bfs())memcpy(cur,hd,sizeof hd),flow+=dinic(,n);//
}
return false;
}
int main()
{
scanf("%d%d",&n,&nR); bs=pi2/n; en=(n<<)+; r2=Sqr(nR);
for(int i=;i<=n;i++)
{
scanf("%lf%lf",&x[i],&y[i]);
alp[i]=atan2(y[i],x[i]);
dis[i]=sqrt(Sqr(x[i])+Sqr(y[i]));
d2[i]=Sqr(dis[i]);
}
db l=,r=,ans;
while(r-l>jmp)
{
db mid=(l+r)/;
if(chk(mid))ans=mid,r=mid-jmp;
else l=mid+jmp;
}
printf("%.8f\n",ans);
return ;
}
LOJ 2548 「JSOI2018」绝地反击 ——二分图匹配+网络流手动退流的更多相关文章
- 【LOJ】#2548. 「JSOI2018」绝地反击
题解 卡常卡不动,我自闭了,特判交上去过了 事实上90pts= = 我们考虑二分长度,每个点能覆盖圆的是一段圆弧 然后问能不能匹配出一个正多边形来 考虑抖动多边形,多边形的一个端点一定和圆弧重合 如果 ...
- LOJ 2550 「JSOI2018」机器人——找规律+DP
题目:https://loj.ac/problem/2550 只会写20分的搜索…… #include<cstdio> #include<cstring> #include&l ...
- LOJ 2551 「JSOI2018」列队——主席树+二分
题目:https://loj.ac/problem/2551 答案是排序后依次走到 K ~ K+r-l . 想维护一个区间排序后的结果,使得可以在上面二分.求和:二分可以知道贡献是正还是负. 于是想用 ...
- LOJ 2547 「JSOI2018」防御网络——思路+环DP
题目:https://loj.ac/problem/2547 一条树边 cr->v 会被计算 ( n-siz[v] ) * siz[v] 次.一条环边会被计算几次呢?于是去写了斯坦纳树. #in ...
- LOJ 2546 「JSOI2018」潜入行动——树形DP
题目:https://loj.ac/problem/2546 dp[ i ][ j ][ 0/1 ][ 0/1 ] 表示 i 子树,用 j 个点,是否用 i , i 是否被覆盖. 注意 s1<= ...
- loj#2574. 「TJOI2018」智力竞赛 (路径覆盖)
目录 题目链接 题解 代码 题目链接 loj#2574. 「TJOI2018」智力竞赛 题解 就是求可重路径覆盖之后最大化剩余点的最小权值 二分答案后就是一个可重复路径覆盖 处理出可达点做二分图匹配就 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
- Loj #3057. 「HNOI2019」校园旅行
Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你 ...
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
随机推荐
- AJAX的简单示例:注册校验
众所周知,我们每次需要注册一个网站的用户名时,都会校验该邮箱.用户名是不是正确的格式.是不是有被使用过,密码是否符合规则,二次确认是否符合. 如果这些校验都采用form表单提交的话,会给用户带来极不好 ...
- MYSQL+PHP的学习之路
MYSQL+PHP 先从MYSQL开始吧 第一步:SQL语句基础 1.书籍 2.网站: 这个网站在线测试和考试http://sqlzoo.net/wiki/SELECT_basics/zh 3.学习过 ...
- 信息技术手册可视化进度报告 基于BeautifulSoup框架的python3爬取数据并连接保存到MySQL数据库
老师给我们提供了一个word文档,里面是一份信息行业热词解释手册,要求我们把里面的文字存进数据库里面,然后在前台展示出来. 首先面临的问题是怎么把数据导进MySQL数据库,大家都有自己的方法,我采用了 ...
- nim读写注册表的小例子
nim读写注册表的小例子 2018年5月7日 15:11:58 codegay 贴一个nim读写注册表的例子,虽然简单,但是nim官方没有写windows注册表相关的文档, 我贴的例子兴许能帮大家省点 ...
- MAVEN项目不扫描mybatis的mapper.xml问题
在使用maven+mybatis+spring在开发的时候,遇到问题,总是找不到mapper.xml文件里定义的方法.检查后发现maven编译后并没有将xml文件打包到输出路径,导致bean创建失败. ...
- CSS效果:跑马灯按钮
HTML代码 <html lang="en"> <head> <meta charset="UTF-8"> <meta ...
- OVS常用命令与使用总结
说明 在平时使用ovs中,经常用到的ovs命令,参数,与举例总结,持续更新中… 进程启动 1.先准备ovs的工作目录,数据库存储路径等 mkdir -p /etc/openvswitch mkdir ...
- RabbitMQ和kafka从几个角度简单的对比
业界对于消息的传递有多种方案和产品, 本文就比较有代表性的两个MQ(rabbitMQ,kafka)进行阐述和做简单的对比 在应用场景方面,RabbitMQ,遵循AMQP协议,由内在高并发的erlann ...
- git教程:添加远程仓库
转自: 添加远程仓库 现在的情景是,你已经在本地创建了一个Git仓库后,又想在GitHub创建一个Git仓库,并且让这两个仓库进行远程同步,这样,GitHub上的仓库既可以作为备份,又可以让其他人通过 ...
- Mesh内存分配器的mmap小技巧
最近看了一篇内存分配器的论文,原理很简单,但是里面的数学论证还没看懂,这次先简单写一下原理和用到的API. 内存分配器是用于封装操作系统提供的底层API,给应用程序提供动态内存的.内存不断申请释放后, ...