LGP3953题解
(口胡)
去年刚学 A_star 的时候以为是板子,上午推了一会儿之后受教了
遇到最短路的题先建最短路 DAG,虽然有0边但是先跑一个 Dijkstra。
然后设 \(d[u]\) 是从 \(1\) 到 \(u\) 的最短路径长度, \(f[u][k]\) 是到节点 \(u\) 且路径长度为 \(d[u]+k\) 的路径条数。
那么似乎可以通过每一条边来转移这个类似背包的东西。
那么如果有一个环的长度不大于 \(k\) 呢?
我们不跑背包,将转移树(或者说转移 DAG)来数路径条数,也就是从 \((1,0)\) 到 \((n,0),(n,1)...(n,k)\) 的路径条数。
节点数量是 \(n \times k\) 的,可以通过,如果出现了无穷种方案那么一定出现了一个环,用拓扑排序判断即可。
感觉紫色严重恶评啊(
#include<cstdio>
#include<cctype>
typedef unsigned ui;
const ui M=1e5+5;
ui T,n,m,k,G,P,cnt,h[M],d[M],D[M],t[M<<2],id[M][51];ui u[M<<1],v[M<<1],w[M<<1];
struct Edge{
ui v,nx,w;
}e[M<<2];
inline ui Add(const ui&a,const ui&b){
return a+b>=P?a+b-P:a+b;
}
inline void Add(const ui&u,const ui&v,const ui&w){
e[++cnt]=(Edge){v,h[u],w};h[u]=cnt;
}
inline void Mdf(ui u,const ui&V){
if(~V)d[u]=V;for(D[u]=V,u=u+G>>1;u;u>>=1)t[u]=t[u<<1|(D[t[u<<1]]>D[t[u<<1|1]])];
}
inline void Dijkstra(){
ui u,v,E;for(u=2;u<=n;++u)D[u]=0x7fffffff;D[1]=0;for(G=1;G<=n+1;G<<=1);
for(u=1;u<=n;++u)t[u+G]=u;for(u=G-1;u>=1;--u)t[u]=t[u<<1|(D[t[u<<1]]>D[t[u<<1|1]])];
while(u=t[1])for(Mdf(u,-1),E=h[u];E;E=e[E].nx)if(d[u]+e[E].w-D[v=e[E].v]>>31)Mdf(v,d[u]+e[E].w);
for(u=1;u<=G+n;++u)t[u]=0;
}
struct Graph{
ui cnt,f[M*51],h[M*51],hd[M*51];bool t[M*51],vis[M*51],tag[M*51];ui L,R,q[M*51];
struct Edge{
ui v,nx;
}e[M*102],E[M*102];
inline void Add(const ui&u,const ui&v){
++cnt;e[cnt]=(Edge){v,h[u]};E[cnt]=(Edge){u,hd[v]};hd[v]=h[u]=cnt;
}
inline void init(){
ui e,u;q[L=R=1]=id[n][k];
while(L<=R)for(e=hd[u=q[L++]];e;e=E[e].nx)!t[e[E].v]&&(q[++R]=e[E].v),t[e[E].v]=true;
}
ui DFS(const ui&u){
ui E,x;if(vis[u])return-1;if(tag[u])return f[u];tag[u]=true;vis[u]=true;
for(E=h[u];E;E=e[E].nx,f[u]=::Add(f[u],x))if(!~(x=DFS(e[E].v)))return-1;return vis[u]=false,f[u];
}
}g;
inline ui read(){
ui n(0);char s;while(!isdigit(s=getchar()));while(n=n*10+(s&15),isdigit(s=getchar()));return n;
}
signed main(){
ui i,j;T=read();D[0]=-1;
while(T--){
n=read();m=read();k=read();P=read();for(i=1;i<=n;++i)for(j=0;j<=k;++j)id[i][j]=++cnt;cnt=0;
for(i=1;i<=k;++i)g.Add(id[n][i-1],id[n][k]);g.f[id[n][k]]=1;
for(i=1;i<=m;++i)u[i]=read(),v[i]=read(),w[i]=read(),Add(u[i],v[i],w[i]);Dijkstra();
for(i=1;i<=m;++i)for(j=0;j+d[u[i]]+w[i]-d[v[i]]<=k;++j)g.Add(id[u[i]][j],id[v[i]][j+d[u[i]]+w[i]-d[v[i]]]);
g.init();for(i=1;i<=id[n][k];++i)if(!g.t[i])g.tag[i]=true;j=g.DFS(1);printf(!~j?"-1\n":"%u\n",j);
for(cnt=g.cnt=0,i=1;i<=n;++i)for(h[i]=D[i]=j=0;j<=k+1;++j){
g.f[id[i][j]]=g.h[id[i][j]]=g.hd[id[i][j]]=g.t[id[i][j]]=g.vis[id[i][j]]=g.tag[id[i][j]]=0;id[i][j]=0;
}
}
}
LGP3953题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- Typora快捷键 shortcuts-windows
Typora快捷键 shortcuts-windows 快捷键 作用 ctrl+ ctrl- 字体大小调节 ctrl + shift + ` 行内代码 alt+shift+5 删除线 ctrl+shi ...
- 微信小程序开发提升效率
http://www.ifanr.com/minapp/790017 微信小程序的 API 实现需要兼顾方方面面,所以仍然使用 callback 写法. 众所周知,Callback-Hell(回调地狱 ...
- python数据分析之numpy、matplotlib的使用
5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一 ...
- 在ABP VNext框架中处理和用户相关的多对多的关系
前面介绍了一些ABP VNext架构上的内容,随着内容的细化,我们会发现ABP VNext框架中的Entity Framework处理表之间的引用关系还是比较麻烦的,一不小心就容易出错了,本篇随笔介绍 ...
- 关于mybatis,需要掌握的基础
目录 ❀ 总结 mybatis,需要掌握的基础如下: 1.了解ORM 思想.ORM思想的作用.映射配置的两种方式 2.MyBatis开发流程(基本使用) 3.日志框架 4.了解mybatis生命周期并 ...
- 针对Office宏病毒的高级检测
前言 攻击者可能发送带有恶意附件的钓鱼邮件,诱导受害者点击从而获取对方的系统控制权限 期间会借助 Atomic 工具完成攻击复现,再对具体的过程细节进行分析取证,然后深入研究.剖析其行为特征 最后输出 ...
- Python+selenium自动循环送贺卡
Python源代码如下: # coding=utf-8 from selenium import webdriver from time import sleep from random import ...
- python-利用shutil模块rmtree方法可以将文件及其文件夹下的内容删除
import shutil import os image_path = os.path.join(os.path.dirname(__file__),'image') # 如果存在image目录则删 ...
- 字符集编码(三):Unicode
前面<字符集编码(上):Unicode 之前>我们讲了在二十世纪九十年代 Unicode 出现之前各厂商和标准化组织为了应对不同语言文字的编码需求而设计了各种互不兼容的字符集编码标准,这使 ...
- 让你的Linux像黑客帝国的画面一样炫酷
#sudo apt-add-repository ppa:hollywood/ppa #sudo apt-get install hollywood #sudo apt-get install ...