拉题链接  https://vjudge.net/contest/430219#overview

原题链接  https://codeforces.com/problemset/problem/340/C

前言

cf 1600的题, 直接拿来给大一的做, 感觉有亿点点难, 这是个纯数学题, 我用的排列组合方法推导

题目

题意(其实我觉得还是看上边的Note好理解)

给n个数(分别为a1, a2 ...... an-1, 把这n个数全排(共Ann 个序列)一遍, 对于每个序列, 值=每个|ai - ai-1|之和(i = 1~n) , 其中, i = 0时, 为|a1-0|

然后, 将这n的阶乘个式子的值加起来, 先用res表示, 最后输出res/g  和  Ann / g  (g为res与Ann 最大公因数)

题解

硬做会超时, 要想着归纳

一  : 当对于一种序列, 比如2 3 5(注意5在最后面): |2 – 0| + |3 – 2| + |5 – 3| = 5; 5只出现1次, 其余2 3都出现2次,

  即: 一种序列中最后面的数出现一次, 前n-1个数出现2次

  ====> 在这所有排列中, 每个数出现总次数 =  2 * (n的阶乘) - (n-1的阶乘)

  对式子的解释: 2 * (n的阶乘): 所有数全排的种类数 * 一种排列出现两次;  (n - 1的阶乘): 当这个数在最后时, 前面的数全排

二  : 先把绝对值拆开, 比如 |2 – 0| + |3 – 2| + |5 – 3| = 2 + 3 - 2 + 5 - 3 ,最大值5一定是正的, 3与2搭配时-->3为正; 3与5搭配时-->3为负

  即: 一个数与比它大的数搭配(挨着,不分前后)时, 它为负, 与比它小的数搭配时, 它为正

  ====> 设大于n的数有m个, 减去一个数的次数(为负的次数) = 2 * m * (n - 1的阶乘) 

  对式子的解释: 2为该数与另一个数的两种排列, m: 从m个比它大的数挑一个, 也就是Cm1 ;  (n - 1的阶乘) : 该数与另一个数绑定后全排

重点来了, 结果快来了


这个数最后是加减了多少倍呢?

每个数出现的次数

= 正的次数 - 负的次数

= ( 出现的总次数 -  负的次数 )  -  负的次数 

= 第一个式子 - 2 * 第二个式子

= [2 * (n的阶乘) - (n-1的阶乘)] - [2 * ( 2 * m * (n - 1的阶乘) )]

那结果 = [ 2 * (n的阶乘) - (n-1的阶乘) - 2 *  2 * m * (n - 1的阶乘)  ]    和    n的阶乘   ~~~(约去n-1的阶乘)~~~

= 2 * n - 1 - 4 * m      和         n

m = 大于该数的个数, 对数组小到大排序后(下标从0开始), 大于该数的个数 = n - i - 1, 带入上式即可

(化简 = 2n-1-4n+4i+4 = 4i-2n+3)

代码

#include <iostream>
#include <algorithm> using namespace std; typedef long long ll; const int N = 1e5 + 10; ll res = 0, fenmu = 1;
ll a[N]; ll gcd(ll a, ll b)
{
return b? gcd(b, a % b): a;
}
int main()
{
int n;
cin >> n;
for(int i = 0; i < n; i ++)
scanf("%lld", &a[i]); sort(a, a+n);
for(int i = 0; i < n; i ++)
res += (2 * n - 1 - 4 * (n - i - 1)) * a[i];
// res += (4i-2n+3) * a[i];
int g = gcd(res, n);
cout << res/g << ' '<< n/g << endl;
return 0;
}

C. Tourist Problem 2021.3.29 晚vj拉题 cf 1600 纯数学题的更多相关文章

  1. C. Tourist Problem

    http://codeforces.com/problemset/problem/340/C 赛时没想出赛后却能较快想出深深的教育自己做题一定要静下心来,不要轻易放弃,认真思考,不要浮躁着急,不要太容 ...

  2. codeforces 340C Tourist Problem(公式题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Tourist Problem Iahub is a big fan of tou ...

  3. Codeforces Round #198 (Div. 2) C. Tourist Problem

    C. Tourist Problem time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  4. Codeforces Round #198 (Div. 2) C. Tourist Problem (数学+dp)

    C. Tourist Problem time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  5. CodeForces - 340 C - Tourist Problem

    先上题目: A - Tourist Problem Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  6. 2021.10.29 数位dp

    2021.10.29 数位dp 1.数字计数 我们先设数字为ABCD 看A000,如果我们要求出它所有数位之和,我们会怎么求? 鉴于我们其实已经求出了0到9,0到99,0到999...上所有数字个数( ...

  7. 2021.10.29 P1649 [USACO07OCT]Obstacle Course S(BFS)

    2021.10.29 P1649 [USACO07OCT]Obstacle Course S(BFS) 题意: 给一张n*n的图,起点为A,终点为 B,求从A到B转弯次数最少为多少. 分析: 是否存在 ...

  8. 2021.12.21 eleveni的刷题记录

    2021.12.21 eleveni的刷题记录 0. 有意思的题 P6701 [POI1997] Genotype https://www.luogu.com.cn/problem/P6701 状压优 ...

  9. 2021.12.19 eleveni的刷题记录

    2021.12.19 eleveni的刷题记录 0. 本次记录有意思的题 0.1 每个点恰好经过一次并且求最小时间 P2469 [SDOI2010]星际竞速 https://www.luogu.com ...

随机推荐

  1. Linux巡检检查项

    不定时更新...... 1)服务器 1.1 SELINUX检查(sestatus) 1.2 资源限制检查(ulimit -a) 1.3 最近登录(last) 1.4 操作系统版本(cat /etc/r ...

  2. MySQL二进制binlog日志说明以及利用binlog日志恢复数据

    MySQL的binlog日志对于mysql数据库来说是十分重要的.在数据丢失的紧急情况下,我们往往会想到用binlog日志功能进行数据恢复(定时全量备份+binlog日志恢复增量数据部分). 一.关于 ...

  3. 嵌入式无操作系统下管理内存和队列(类UCOS II思想)

    例子:存储日志,最多存128条,每条最大1MB. 内存方面 因为嵌入式不适合用动态内存,会产生碎片.这里我们用 u8 data[LOG_SIZE];开辟固定128MB的内存区,再对其分为128个1MB ...

  4. 《前端运维》三、Docker--1镜像与容器

    一.基本概念 如果我们想要让软件运行起来,首先要保证操作系统的设置,其次还需要依赖各种组件和库的正确安装.那么虚拟机就是一种带环境安装的一种解决方案,它可以实现在一种操作系统里面运行另外一种操作系统, ...

  5. springboot项目配置类

    一.在springboot项目中,如果不进行配置,直接访问静态页面是无法访问的,需要进行配置,springboot舍弃了XML文件的配置方式,这里我们采用开发配置类的方式.新建MvcConfig类,加 ...

  6. WebApplicationContext?

    WebApplicationContext 继承了ApplicationContext  并增加了一些WEB应用必备的特有功能,它不同于一般的ApplicationContext ,因为它能处理主题, ...

  7. XMLBeanFactory?

    最常用的就是 org.springframework.beans.factory.xml.XmlBeanFactory ,它根据XML文件中的定义加载beans.该容器从XML 文件读取配置元数据并用 ...

  8. spring-boot-learning-spring Security

    SpringSecurity的简单原理: 一旦启用了Spring Security,Spring IoC容器就会为你创建一个名称为springSecurityFilterChain 的Spring B ...

  9. Spring根据路径前缀获取不同Resource

    相关文章:https://www.jianshu.com/p/5bab9e03ab92 官方文档:https://docs.spring.io/spring/docs/current/spring-f ...

  10. WebSQL是HTML 5规范的一部分吗?

    不是,虽然很多人将其标记为HTML 5,但它不是HTML 5规范的一部分.HTML 5规范基于SQLite.