C. Tourist Problem 2021.3.29 晚vj拉题 cf 1600 纯数学题
拉题链接 https://vjudge.net/contest/430219#overview
原题链接 https://codeforces.com/problemset/problem/340/C
前言
cf 1600的题, 直接拿来给大一的做, 感觉有亿点点难, 这是个纯数学题, 我用的排列组合方法推导
题目
题意(其实我觉得还是看上边的Note好理解)
给n个数(分别为a1, a2 ...... an-1, 把这n个数全排(共Ann 个序列)一遍, 对于每个序列, 值=每个|ai - ai-1|之和(i = 1~n) , 其中, i = 0时, 为|a1-0|
然后, 将这n的阶乘个式子的值加起来, 先用res表示, 最后输出res/g 和 Ann / g (g为res与Ann 最大公因数)
题解
硬做会超时, 要想着归纳
一 : 当对于一种序列, 比如2 3 5(注意5在最后面): |2 – 0| + |3 – 2| + |5 – 3| = 5; 5只出现1次, 其余2 3都出现2次,
即: 一种序列中最后面的数出现一次, 前n-1个数出现2次
====> 在这所有排列中, 每个数出现总次数 = 2 * (n的阶乘) - (n-1的阶乘)
对式子的解释: 2 * (n的阶乘): 所有数全排的种类数 * 一种排列出现两次; (n - 1的阶乘): 当这个数在最后时, 前面的数全排
二 : 先把绝对值拆开, 比如 |2 – 0| + |3 – 2| + |5 – 3| = 2 + 3 - 2 + 5 - 3 ,最大值5一定是正的, 3与2搭配时-->3为正; 3与5搭配时-->3为负
即: 一个数与比它大的数搭配(挨着,不分前后)时, 它为负, 与比它小的数搭配时, 它为正
====> 设大于n的数有m个, 减去一个数的次数(为负的次数) = 2 * m * (n - 1的阶乘)
对式子的解释: 2为该数与另一个数的两种排列, m: 从m个比它大的数挑一个, 也就是Cm1 ; (n - 1的阶乘) : 该数与另一个数绑定后全排
重点来了, 结果快来了
这个数最后是加减了多少倍呢?
每个数出现的次数
= 正的次数 - 负的次数
= ( 出现的总次数 - 负的次数 ) - 负的次数
= 第一个式子 - 2 * 第二个式子
= [2 * (n的阶乘) - (n-1的阶乘)] - [2 * ( 2 * m * (n - 1的阶乘) )]
那结果 = [ 2 * (n的阶乘) - (n-1的阶乘) - 2 * 2 * m * (n - 1的阶乘) ] 和 n的阶乘 ~~~(约去n-1的阶乘)~~~
= 2 * n - 1 - 4 * m 和 n
m = 大于该数的个数, 对数组小到大排序后(下标从0开始), 大于该数的个数 = n - i - 1, 带入上式即可
(化简 = 2n-1-4n+4i+4 = 4i-2n+3)
代码
#include <iostream>
#include <algorithm> using namespace std; typedef long long ll; const int N = 1e5 + 10; ll res = 0, fenmu = 1;
ll a[N]; ll gcd(ll a, ll b)
{
return b? gcd(b, a % b): a;
}
int main()
{
int n;
cin >> n;
for(int i = 0; i < n; i ++)
scanf("%lld", &a[i]); sort(a, a+n);
for(int i = 0; i < n; i ++)
res += (2 * n - 1 - 4 * (n - i - 1)) * a[i];
// res += (4i-2n+3) * a[i];
int g = gcd(res, n);
cout << res/g << ' '<< n/g << endl;
return 0;
}
C. Tourist Problem 2021.3.29 晚vj拉题 cf 1600 纯数学题的更多相关文章
- C. Tourist Problem
http://codeforces.com/problemset/problem/340/C 赛时没想出赛后却能较快想出深深的教育自己做题一定要静下心来,不要轻易放弃,认真思考,不要浮躁着急,不要太容 ...
- codeforces 340C Tourist Problem(公式题)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Tourist Problem Iahub is a big fan of tou ...
- Codeforces Round #198 (Div. 2) C. Tourist Problem
C. Tourist Problem time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- Codeforces Round #198 (Div. 2) C. Tourist Problem (数学+dp)
C. Tourist Problem time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- CodeForces - 340 C - Tourist Problem
先上题目: A - Tourist Problem Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & ...
- 2021.10.29 数位dp
2021.10.29 数位dp 1.数字计数 我们先设数字为ABCD 看A000,如果我们要求出它所有数位之和,我们会怎么求? 鉴于我们其实已经求出了0到9,0到99,0到999...上所有数字个数( ...
- 2021.10.29 P1649 [USACO07OCT]Obstacle Course S(BFS)
2021.10.29 P1649 [USACO07OCT]Obstacle Course S(BFS) 题意: 给一张n*n的图,起点为A,终点为 B,求从A到B转弯次数最少为多少. 分析: 是否存在 ...
- 2021.12.21 eleveni的刷题记录
2021.12.21 eleveni的刷题记录 0. 有意思的题 P6701 [POI1997] Genotype https://www.luogu.com.cn/problem/P6701 状压优 ...
- 2021.12.19 eleveni的刷题记录
2021.12.19 eleveni的刷题记录 0. 本次记录有意思的题 0.1 每个点恰好经过一次并且求最小时间 P2469 [SDOI2010]星际竞速 https://www.luogu.com ...
随机推荐
- Linux巡检检查项
不定时更新...... 1)服务器 1.1 SELINUX检查(sestatus) 1.2 资源限制检查(ulimit -a) 1.3 最近登录(last) 1.4 操作系统版本(cat /etc/r ...
- MySQL二进制binlog日志说明以及利用binlog日志恢复数据
MySQL的binlog日志对于mysql数据库来说是十分重要的.在数据丢失的紧急情况下,我们往往会想到用binlog日志功能进行数据恢复(定时全量备份+binlog日志恢复增量数据部分). 一.关于 ...
- 嵌入式无操作系统下管理内存和队列(类UCOS II思想)
例子:存储日志,最多存128条,每条最大1MB. 内存方面 因为嵌入式不适合用动态内存,会产生碎片.这里我们用 u8 data[LOG_SIZE];开辟固定128MB的内存区,再对其分为128个1MB ...
- 《前端运维》三、Docker--1镜像与容器
一.基本概念 如果我们想要让软件运行起来,首先要保证操作系统的设置,其次还需要依赖各种组件和库的正确安装.那么虚拟机就是一种带环境安装的一种解决方案,它可以实现在一种操作系统里面运行另外一种操作系统, ...
- springboot项目配置类
一.在springboot项目中,如果不进行配置,直接访问静态页面是无法访问的,需要进行配置,springboot舍弃了XML文件的配置方式,这里我们采用开发配置类的方式.新建MvcConfig类,加 ...
- WebApplicationContext?
WebApplicationContext 继承了ApplicationContext 并增加了一些WEB应用必备的特有功能,它不同于一般的ApplicationContext ,因为它能处理主题, ...
- XMLBeanFactory?
最常用的就是 org.springframework.beans.factory.xml.XmlBeanFactory ,它根据XML文件中的定义加载beans.该容器从XML 文件读取配置元数据并用 ...
- spring-boot-learning-spring Security
SpringSecurity的简单原理: 一旦启用了Spring Security,Spring IoC容器就会为你创建一个名称为springSecurityFilterChain 的Spring B ...
- Spring根据路径前缀获取不同Resource
相关文章:https://www.jianshu.com/p/5bab9e03ab92 官方文档:https://docs.spring.io/spring/docs/current/spring-f ...
- WebSQL是HTML 5规范的一部分吗?
不是,虽然很多人将其标记为HTML 5,但它不是HTML 5规范的一部分.HTML 5规范基于SQLite.