\(k\leq 200000\)

考虑转化成枚举 \(k\) 的形式

我们错位相减!

\[A_k=\sum_{i=1}^N i^K\times R^i
\\
RA_k=\sum_{i=2}^{N+1} (i-1)^KR^i
\\
(R-1)A_k=N^kR^{N+1}+\sum_{i=1}^{N}[(i-1)^k-i^k]R^i
\]

二项式展开!

\[(R-1)A_k=N^kR^{N+1}+\sum_{i=1}^{N}[\sum_{j=0}^k(-1)^{k-j}i^{j}-i^k]R^i
\\
=N^kR^{N+1}+\sum_{i=1}^{N}\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{k-j}i^{j}R^i
\\
=N^kR^{N+1}+\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{k-j}\sum_{i=1}^{N}i^{j}R^i
\\
=N^kR^{N+1}+\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{k-j}A_j
\]

这个时候我们递归计算可以得到 \(O(k^2)\) 的复杂度

考虑能否插值出一个 \(k\) 次多项式?

先暴力展开第零项

\[A_0=\sum_{i=1}^N \times R^i
\]

等比数列求和公式套一下

\[S_n=\frac{a_1(1-q^n)}{1-q}
\\
A_0=\frac{R(1-R^n)}{1-R}=\frac{R^{n+1}-R}{R-1}=R^{N + 1}\cdot (\frac{1}{R - 1}) - R\cdot (\frac{1}{R - 1})
\]

暴力展开第一项

\[A_1=\frac{NR^{N+1}-A_0}{R-1}
\\
A_1=\frac{NR^{N+1}-\frac{R^{n+1}-R}{R-1}}{R-1}
\\
A_1=\frac{NR^{N+1}}{R-1}-\frac{\frac{R^{n+1}-R}{R-1}}{R-1}
\\
A_1=\frac{NR^{N+1}}{R-1}-\frac{R^{n+1}-R}{(R-1)^2}
\\
A_1=R^{N + 1}(\frac{N}{R-1}-\frac{1}{(R-1)^2}) + R\times \frac{1}{(R-1)^2}
\]

我们的 \(A_k\) 可以插值,次数可以保证,我们直接把前 \(O(k)\) 项求出来插值,线性拉插一下就好了

[51nod 1822]序列求和的更多相关文章

  1. 51nod 1258 序列求和 V4

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4  基准时间限制:8 秒 空间限制:131 ...

  2. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  3. 51nod 1228 序列求和(伯努利数)

    1228 序列求和  题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 T(n) = n^k,S(n) = T(1 ...

  4. 【51nod】1822 序列求和 V5

    题解 我是zz吧 nonprime[i * prime[j]] = 0 = = 还以为是要卡常,卡了半天就是过不掉 我们来说这道题-- 首先,我们考虑一个\(K^2\)做法 \(f_{k}(N) = ...

  5. 51nod 1228 序列求和 ( 1^k+2^k+3^k+...+n^k )

    C为组合数,B为伯努利数 具体推到过程略 参考博客:http://blog.csdn.net/acdreamers/article/details/38929067# (我的式子和博客中的不一样,不过 ...

  6. 51Nod - 1228 序列求和 (自然数幂和+伯努利数)

    https://vjudge.net/problem/51Nod-1228 Description T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k, ...

  7. 51Nod 1228 序列求和

    T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n).   例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^ ...

  8. [51nod]1229 序列求和 V2(数学+拉格朗日差值)

    题面 传送门 题解 这种颓柿子的题我可能死活做不出来-- 首先\(r=0\)--算了不说了,\(r=1\)就是个裸的自然数幂次和直接爱怎么搞怎么搞了,所以以下都假设\(r>1\) 设 \[s_p ...

  9. 【51Nod1258】序列求和V4(FFT)

    [51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间 ...

随机推荐

  1. SQL中常用的字符串LEFT函数和RIGHT函数详解!

    今天继续整理日常可能经常遇到的一些处理字符串的函数,记得点赞收藏!以备不时之需!看到最后有惊喜! LEFT(expression, length)函数 解析:从提供的字符串的左侧开始提取给定长度的字符 ...

  2. vue生命周期加载顺序

    1.beforeCreate(创建前)表示实例完全被创建出来之前,vue 实例的挂载元素$el和数据对象 data 都为 undefined,还未初始化.此钩子函数不能获取到数据,dom元素也没有渲染 ...

  3. unity---GL实现案例

    GL C#实现 不管是画任何东西都需要Begin()和End()函数: 画线 using System.Collections; using System.Collections.Generic; u ...

  4. 120_PowerBI堆积瀑布图_R脚本Visual

    博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 一.效果 二.data 三.添加字段 注意红色框标注地方 四.code # 下面用于创建数据帧并删除重复行的代码始终执行, ...

  5. Css实例之信息提交

    代码实例: <!DOCTYPE html><html><head><meta charset="UTF-8"><title&g ...

  6. 关于我学git这档子事(5)

    对于错误: fatal: refusing to merge unrelated histories 解决之道: git pull origin main --allow-unrelated-hist ...

  7. conda和pip加速参考

    conda install和创建虚拟环境下载慢,可以修改/root/.condarc文件: vim /root/.condarc 各系统都可以通过修改用户目录下的 .condarc 文件.Window ...

  8. 技术分享 | app自动化测试(Android)--元素定位方式与隐式等待

    原文链接 元素定位是 UI 自动化测试中最关键的一步,假如没有定位到元素,也就无法完成对页面的操作.那么在页面中如何定位到想要的元素,本小节讨论 Appium 元素定位方式. Appium的元素定位方 ...

  9. Redis的使用(二)

    一.redis简单应用 其实在写这个redis专题时我想了很久,我觉得redis没什么好说的,因为现在是个人都会用redis,但是我在写netty专题时发现,netty里面很多东西和概念有很多跟red ...

  10. 【JS】两数之和

    给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标. 你可以假设每种输入只会对应一个答案.但是,数组中同一 ...