Fast-Rcnn学习笔记
Fast-Rcnn学习笔记
Fast-RCNN总览
step1:图片先放进卷积层
step2:再卷积层的特征图谱上回映射出对应的感兴趣区域
step3:集过一层ROI Pooling(后面介绍)
step4:每一个ROI变成一维的向量送入两个全连接层
step5:在最后的全连接层再分别将向量送入到分类框/回归框
Fast-RCNN与SPPNet的比较
- Fast-Rcnn在SPPNet上再进行改进
- SPP-net上的不足之处
- 训练比较慢(25h),需要许多磁盘空间
- 再训练时不能更新SPP层下的参数
- Fast R-CNN有点
- 测试是更快
- 一步训练
- 更高的map
- Fast R-CNN的ROI跟sPPNet类似但是又不太一样
- Fast R-CNN是用固定大小的H*W的框(H,W是需要设置的超参数)
- 假设从特征图谱出来的特征图大小为(hw),则每一个小格的大小为(h/Hw/W)
- 然后从每个小的格子中max-pooling,在每个特征图的通道中最大池化都是独立的
在测试时和训练时的过程
- 测试时
- 训练时
关于在分类器和回归器中的详解
在分类器
- 说明
step1:这里包括N+1个类别(包括1个背景类)
step2:对这一个类别使用softmax进行打分(总和为1)
step3:从这N+1中选择一个分最大的,则该ROI属于的类别为该类
在回归器
- 说明
step1:每一个类别对应4个参数(后面介绍dx,dy,dw,dh这四个参数)
step2:同理选出属于该类的dx,dy,dw,dh
- 详解边界框回归器
- 说明
step1:绿色的G是Ground Truth,黄色框P是预选框,红色框是最终预测的边界框
step2:dx(P) = (Gx-px)/Pw。同理可以求得dy(p),dw(p),dh(p)
step3:将求得的带入上面的公式中即可求得最终的预测框
关于Fast-RCnn中的Multi-task loss
分类损失
- 因为是属于分类任务,所以使用Cross Entropy loss
- 关于Cross Entropy
- 本文对应的是多分类任务
step1:假设真实标签的one-hot编码是:[0,0,...,1,...,0]
step2:预测的softmax概率为[0.1,0.3,...,0.4,...,0.1]
step3:那么Loss=-log(0.4)
边界框回归损失
- 说明
针对[u>=1]艾弗森括号:如果是背景类别则该项为0,即:背景不用边界框回归
- 总上所述:fast-rcnn除了没用将selective search融为一体,将Feature extraction,classification,bounding-box regression都融为一体了
- 后面提出的Faster-RCNN将解决这一问题
Fast-Rcnn学习笔记的更多相关文章
- R-CNN学习笔记
R-CNN学习笔记 step1:总览 步骤: 输入图片 先挑选大约2000个感兴趣区域(ROI)使用select search方法:[在输入的图像中寻找blobby regions(可能相同纹理,颜色 ...
- Fast RCNN 学习
因为项目需要,之前没有接触过深度学习的东西,现在需要学习Fast RCNN这个方法. 一步步来,先跟着做,然后再学习理论 Fast RCNN 训练自己数据集 (1编译配置) Fast RCNN 训练自 ...
- 【CV论文阅读】 Fast RCNN + SGD笔记
Fast RCNN的结构: 先从这幅图解释FAST RCNN的结构.首先,FAST RCNN的输入是包含两部分,image以及region proposal(在论文中叫做region of inter ...
- Faster RCNN学习笔记
感谢知乎大神的分享 https://zhuanlan.zhihu.com/p/31426458 Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster R ...
- Fast R-CNN学习总结
Fast R-CNN是R-CNN的改良版,同时也吸取了SPP-net中的方法.在此做一下总结. 论文中讲到在训练阶段,训练一个深度目标检测网络(VGG16),训练速度要比R-CNN快9倍左右,比SPP ...
- Faster RCNN 学习笔记
下面的介绍都是基于VGG16 的Faster RCNN网络,各网络的差异在于Conv layers层提取特征时有细微差异,至于后续的RPN层.Pooling层及全连接的分类和目标定位基本相同. 一). ...
- Mask RCNN 学习笔记
下面会介绍基于ResNet50的Mask RCNN网络,其中会涉及到RPN.FPN.ROIAlign以及分类.回归使用的损失函数等 介绍时所采用的MaskRCNN源码(python版本)来源于GitH ...
- 目标检测(三)Fast R-CNN
作者:Ross Girshick 该论文提出的目标检测算法Fast Region-based Convolutional Network(Fast R-CNN)能够single-stage训练,并且可 ...
- 深度学习论文笔记:Fast R-CNN
知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测. 快速R-CNN采用多项创新技术来提高训练和测试速度,同时 ...
- 标题 发布状态 评论数 阅读数 操作 操作 CNN目标检测系列算法发展脉络简析——学习笔记(三):Fast R-CNN
最近两周忙着上网课.投简历,博客没什么时间写,姑且把之前做的笔记放上来把... 下面是我之前看论文时记的笔记,之间copy上来了,内容是Fast R-CNN的,以后如果抽不出时间写博客,就放笔记上来( ...
随机推荐
- js 简易模块加载器 示例分析
前端模块化 关注前端技术发展的各位亲们,肯定对模块化开发这个名词不陌生.随着前端工程越来越复杂,代码越来越多,模块化成了必不可免的趋势. 各种标准 由于javascript本身并没有制定相关标准(当然 ...
- 基于canvas和web audio实现低配版MikuTap
导言 最近发掘了一个特别happy的网页小游戏--MikuTap.打开之后沉迷了一下午,导致开发工作没做完差点就要删库跑路了,还好boss瞥了我一眼就没下文了.于是第二天我就继续沉迷,随着一阵抽搐,这 ...
- java中对象属性可以是另外一个对象或对象的参考
7.对象的属性可以是另外一个对象或对象的参考 通过这种方法可以迅速构建一个比较大的系统. class Motor { Light[] lights; Handle left, ri ...
- Blazor组件自做一 : 使用JS隔离封装viewerjs库
Viewer.js库是一个实用的js库,用于图片浏览,放大缩小翻转幻灯片播放等实用操作 本文相关参考链接 JavaScript 模块中的 JavaScript 隔离 Viewer.js工程 Blazo ...
- Struts2中将表单数据封装到List和Map集合中
一.将表单数据封装到Map集合中 1.创建MapAction类 import cn.entity.User; import com.opensymphony.xwork2.ActionSupport; ...
- 【面试普通人VS高手】Kafka的零拷贝原理?
最近一个学员去滴滴面试,在第二面的时候遇到了这个问题: "请你简单说一下Kafka的零拷贝原理" 然后那个学员努力在大脑里检索了很久,没有回答上来. 那么今天,我们基于这个问题来看 ...
- Mysql学习day2随笔
--jion on 连接查询 --jion where 等值查询 建议先用jion on再用where过滤 --inner jion 返回交集 --left join 无论右表是否匹配,都会从左表返回 ...
- 在网站copy时自带的版权小尾巴以及“复制代码“,可以怎么实现
前言 每天网上的博客各个领域都会涌现新文章,有时候看到感兴趣的知识就想把某段文字 copy下来 摘录下来,等有时间后慢慢品味 在部分网站上,如果只是复制少量文字,并没有什么不同.但是当我们复制的文字多 ...
- Go能实现AOP吗?
hello~大家好,我是小楼,今天分享的话题是Go是否能实现AOP? 背景 写Java的同学来写Go就特别喜欢将两者进行对比,就经常看到技术群里讨论,比如Go能不能实现Java那样的AOP啊?Go写个 ...
- 甲骨文严查Java授权,换openJDK要避坑
背景 外媒The Register报道,甲骨文稽查企业用户,近期开始将把过去看管较松散的Java授权加入. 甲骨文针对标准版Java(Java SE)有2种商业授权.2019年4月甲骨文宣布Java ...