论文基本情况

发表时间及刊物/会议:2022 CVPR

发表单位:西安电子科技大学, 香港中文大学,重庆邮电大学

问题背景

在大部分半监督学习方法中,一般而言,只有部分置信度高于提前设置的阈值的无标签数据被利用。由此说明,大部分半监督方法没有充分利用已有数据进行训练。

论文创新点

设置了Adaptive Confidence Margin(自适应阈值)根据训练规律动态调整阈值,充分利用所有的无标签数据。

网络结构



具体的训练步骤如下:

初始基本设定:

  1. 设置初始阈值,本文中,对于每个类别,阈值初始值为0.8。
  2. 本模型借鉴Mean Teacher的思想,引入老师模型(ema_model)。
  3. 训练时有标签和无标签数据按1:1的比例输入网络
  4. 模型backbone采用resent18,输出最后一层类别概率分布以及倒数第二层512维特征向量。

学生网络

对于有标签数据:

有标签图片经过弱数据增强(WA)后进入模型,输出结果和真值对比,利用交叉熵函数作为损失函数,计算有标签损失\(L^s_{CE}\)。

对于无标签数据:

无标签图片复制三份(a图, b图, c图),其中两份(a图,b图)经过弱数据增强(WA)后输入模型,再将输出的两个概率分布平均后得到最终的概率分布。记所得概率分布中的最大概率为\(f_{max}\),对应类别记作\(c\)。如果\(f_{max}\)大于此类别\(c\)对应阈值,则将\(c\)作为此类别的真实标签,并将此类数据归为子集I(含“真实标签”);否则,将此类数据归为子集II(无真实标签)。

如果此图片属于子集I,则将c图经过强数据增强(SA)后送入网络,和标签\(c\)计算交叉熵损失\(L^u\)。

若此图片属于子集II,则\(L^u=0\)。并拼接a图,b图输入模型后得到的两个512特征向量,首先根据公式8 计算两个特征向量的相似度,再根据公式9计算SupConLoss \(L^c\) (具体计算方法见论文Supervised Contrastive Learning)。

总损失函数为:



实验中\(\lambda_1 = 0.5,\lambda_2=1,\lambda_3=0.1\)。

老师网络

学生模型根据损失函数更新模型参数后,老师网络在学生网络的基础上使用指数平均移动的方式更新参数。之后,将有标签数据输入老师网络,得到概率分布。

对于一个batch的数据,记最大概率对应标签类别和真实类别相同的图片为集合\(N_{st}\),记\(N^c_{st}\)为最大概率对应标签类别和真实类别相同,且真实类别为\(c\)的图片张数,记\(s_i\)为最大概率, \(\hat{y_i}\)为预测类别,按照以下公式计算一个类别的平均最大概率,记为\(T_c\)。



之后,考虑到置信值会随着epoch数逐步提高,再根据以下公式计算当前epoch各个类别的阈值。

至此,一个iteration结束。

实验

表1 固定阈值和我们方法的比较,在RAF-DB, SFEW数据集上的结果,其中FT 表示使用FixMatch方法时取固定阈值的具体值,

表2 RAF-DB, SFEW 和AffectNet三个数据集上我们的方法和其他优秀的半监督方法对比

图3 自适应阈值调整方法,公式5中关于两个参数的值的消融实验

表3 使用WideResNet-28-2作为backbone在RAFDB上实验结果

图4 使用2D t-SNE 可视化方法可视化得到的特征,从图中可以看出,我们的方法对各类表情提取特征的效果最好(不同类别的特征重合度最小)。

表4 各个不同类别的数据集交叉验证结果。以下结果为在RAF-DB上训练,CK+数据集上进行测试所得结果

[论文][表情识别]Towards Semi-Supervised Deep Facial Expression Recognition with An Adaptive Confidence Margin的更多相关文章

  1. Paper-[acmi 2015]Image based Static Facial Expression Recognition with Multiple Deep Network Learning

    [acmi 2015]Image based Static Facial Expression Recognition with Multiple Deep Network Learning ABST ...

  2. CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等

    CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等 CVPR 2020中选论文放榜后,最新开源项目合集也来了. 本届CPVR共接收6656篇论文,中选1470篇,&q ...

  3. [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  4. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  5. 【Gabor】基于多尺度多方向Gabor融合+分块直方图的表情识别

    Topic:表情识别Env: win10 + Pycharm2018 + Python3.6.8Date:   2019/6/23~25 by hw_Chen2018                  ...

  6. Deep Learning 17:DBN的学习_读论文“A fast learning algorithm for deep belief nets”的总结

    1.论文“A fast learning algorithm for deep belief nets”的“explaining away”现象的解释: 见:Explaining Away的简单理解 ...

  7. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  8. 机器学习: Tensor Flow with CNN 做表情识别

    我们利用 TensorFlow 构造 CNN 做表情识别,我们用的是FER-2013 这个数据库, 这个数据库一共有 35887 张人脸图像,这里只是做一个简单到仿真实验,为了计算方便,我们用其中到 ...

  9. 42 在Raspberry Pi上安装dlib表情识别

    https://www.jianshu.com/p/848014d8dea9 https://www.pyimagesearch.com/2017/05/01/install-dlib-raspber ...

随机推荐

  1. 【动态系统的建模与分析】8_频率响应_详细数学推导 G(jw)_滤波器

  2. Vue.js 开发实践:实现精巧的无限加载与分页功能

    本篇文章是一篇Vue.js的教程,目标在于用一种常见的业务场景--分页/无限加载,帮助读者更好的理解Vue.js中的一些设计思想.与许多Todo List类的入门教程相比,更全面的展示使用Vue.js ...

  3. 10行 JavaScript 实现文本编辑器

    背景 我们平时用到的浏览器编辑器功能都会比较多,实现的代码逻辑也会非常复杂,往往是作为一个单独插件被引入进来的.但是,现在我只需要一个很基本的内容输入内容编辑的功能,如:粗体.斜体.列表.对齐等.那要 ...

  4. linux-RHEL7.0 —— 《Linux就该这么学》阅读笔记

    目录 linux-RHEL7.0 安装部署 修改root密码 RPM(红帽软件包管理器) YUM(软件仓库) Systemd初始化进程 总结 linux命令 帮助命令 man 系统工作命令 echo ...

  5. js手机端判断滑动还是点击

    网上的代码杂七杂八,  我搞个简单明了的!!  你们直接复制粘贴,  手机上 电脑上 可以直接测试!!! 上图: 上代码: <!DOCTYPE html> <html lang=&q ...

  6. Skipper & Tcl 笔记

    https://www.cnblogs.com/yeungchie/ ski-db 打开一个文件获取 lib 对象 dbImport set file "layout.gds" s ...

  7. linux mysql导入导出sql文件

    导出 导出单独数据库:mysqldump -uroot -p 数据库名 > 数据库名.sql 例:mysqldump -uroot -p database1 > database1.sql ...

  8. 时序数据库influxDB介绍

    https://www.jianshu.com/p/68c471bf5533 https://www.cnblogs.com/wzbk/p/10569683.html

  9. oracle提交后再回滚解决办法

    BEGIN; 刚才改错数据,直接commit了,rollback了下,没效果,经过google,oracle有个 闪回 功能,经测试,可用. -- 查询闪回id 如:06001B00054E0000 ...

  10. vue 实现高德坐标转GPS坐标

    vue 实现高德坐标转GPS坐标 首先介绍一下常见的几种地图的坐标类型: WGS-84:这是一个国际标准,也就是GPS坐标(Google Earth.或者GPS模块采集的都是这个类型). GCJ-02 ...