#切分数据集
img_dir = train_parameters['img_dir']
file_name = train_parameters['file_name']
df = pd.read_csv(file_name)
df = df.sample(frac=1)
train_list = []
val_list = []
for i in range(len(df)):
if (i <= len(df)*0.8):
dirlist = img_dir + '/' + df.iloc[i][0] + '.jpg'
label = df.iloc[i][1]
datainfo = [dirlist, label]
train_list.append(datainfo)
else:
dirlist = img_dir + '/' + df.iloc[i][0] + '.jpg'
label = df.iloc[i][1]
datainfo = [dirlist, label]
val_list.append(datainfo) # print(len(train_list))
# print(train_list[1][1])

定义数据集

'''

继承paddle.io.Dataset类

'''

IMAGE_SIZE = [3,224,224]

class Datasets(Dataset):

def init(self, data, mode='train'):

'''

步骤二:实现构造函数,定义数据读取,划分训练和测试、验证数据集

'''

    super(Datasets, self).__init__()

    self.data = data
self.mode = mode
if self.mode == 'train':
self.transforms = T.Compose([
# T.RandomResizedCrop(IMAGE_SIZE),
# T.RandomHorizontalFlip(0.5),
# T.ToTensor(),
# T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
#对输入图像进行裁剪,保持图片中心点不变。transform = CenterCrop(224)。
T.CenterCrop(224),
#随机调整图像的亮度,对比度,饱和度和色调。 transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
T.ColorJitter(0.4, 0.4, 0.4, 0.4),
#依据degrees参数指定的角度范围,按照均匀分布随机产生一个角度对图像进行旋转。
T.RandomRotation(60),
#将形状为 (H x W x C)的输入数据 PIL.Image 或 numpy.ndarray 转换为 (C x H x W)。
T.ToTensor(),
#图像归一化处理,支持两种方式: 1. 用统一的均值和标准差值对图像的每个通道进行归一化处理; 2. 对每个通道指定不同的均值和标准差值进行归一化处理。
T.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225],)
]) elif self.mode == 'valid':
self.transforms = T.Compose([
# T.Resize(IMAGE_SIZE[0]),
# T.RandomCrop(IMAGE_SIZE),
# T.ToTensor(),
# T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
#对输入图像进行裁剪,保持图片中心点不变。transform = CenterCrop(224)。
T.CenterCrop(224),
#随机调整图像的亮度,对比度,饱和度和色调。 transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
T.ColorJitter(0.4, 0.5, 0.6, 0.7),
#依据degrees参数指定的角度范围,按照均匀分布随机产生一个角度对图像进行旋转。
T.RandomRotation(60),
#将形状为 (H x W x C)的输入数据 PIL.Image 或 numpy.ndarray 转换为 (C x H x W)。
T.ToTensor(),
#图像归一化处理,支持两种方式: 1. 用统一的均值和标准差值对图像的每个通道进行归一化处理; 2. 对每个通道指定不同的均值和标准差值进行归一化处理。
T.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225],)
]) def __getitem__(self, index):
'''
实现getitem方法,定义指定index时如何获取数据,并返回单条数(训练数据,对应的标签)
'''
image = Image.open(self.data[index][0])
if image.mode != 'RGB':
image = image.convert('RGB') data = self.transforms(image)
label = np.array([self.data[index][1]-1]).astype('int64')
return data, label def __len__(self):
return len(self.data)

`

datasets数据读取器的更多相关文章

  1. Extjs的数据读取器store和后台返回类型简单解析

    工作中用到了Extjs,从后台获取数据的时候,用到了extjs自己的Ext.data.store方法,然后封装了ExtGridReturn方法, 目的:前台用到Ext.data.store读取从后台传 ...

  2. [原创]SSIS-WMI 数据读取器任务:监控物理磁盘空间

    背景:       随着时间的推移,我们的DW会越来越大,也就意味着磁盘空间会越来越小,那如果哪一天留意不当,就会造成磁盘空间的不足而导致ETL失败,最终影响我们的系统的数据正确性和使用,更严重的有可 ...

  3. 数据读取器对象SqlDataReader与数据适配器对象SqlDataAdapter的使用

        一.数据读取器对象SqlDataReader的使用      如何执行有查询结果集的select语句. 1.SqlDataReader对象的作用:当包含select语句的SqlCommad对象 ...

  4. c#中使用数据读取器读取查询结果

    今天有时间了. 在看<c#数据库入门经典> ,总结数据读取器查询结果. 针对单个结果集使用读取器,有3中方法: String connString =..; String sql =@&q ...

  5. 如何在ADO中使用数据读取器(DataReader)读取数据

    DbDataReader类型(实现IDataReader接口)是从数据源获取信息最简单也最快速的方法. 数据读取器是只读向前的效据流.井且一次返回一条记录.因此.只有当你向数据源提交 Select 查 ...

  6. 调用EF的存储过程报“存储区数据提供程序返回的数据读取器所具有的列数对于所请求的查询不够”问题

    在运用Entity Framework调用存储过程的时候,遇到"调用EF的存储过程报"调用EF的存储过程报“存储区数据提供程序返回的数据读取器所具有的列数对于所请求的查询不够”问题 ...

  7. 【原创】SSIS-WMI 数据读取器任务:监控物理磁盘空间

    1.背景 随着时间的推移,我们的DW会越来越大,也就意味着磁盘空间会越来越小,那如果哪一天留意不当,就会造成磁盘空间的不足而导致ETL失败,最终影响我们的系统的数据正确性和使用,更严重的有可能导致物理 ...

  8. 怎样在C#中从数据库中读取数据(数据读取器)

    实现在C#中通过语句,查询数据库中的数据 SqlConnection con = null; //创建SqlConnection 的对象 try    //try里面放可能出现错误的代码        ...

  9. 数据库学习任务四:数据读取器对象SqlDataReader、数据适配器对象SqlDataAdapter、数据集对象DataSet

    数据库应用程序的开发流程一般主要分为以下几个步骤: 创建数据库 使用Connection对象连接数据库 使用Command对象对数据源执行SQL命令并返回数据 使用DataReader和DataSet ...

随机推荐

  1. C++ 接口的实现方式

    一.接口的定义 有时候,我们得提供一些接口给别人使用.接口的作用,就是提供一个与其他系统交互的方法.其他系统无需了解你内部细节,并且也无法了解内部细节,只能通过你提供 给外部的接口来与你进行通信.根据 ...

  2. 面试突击32:为什么创建线程池一定要用ThreadPoolExecutor?

    在 Java 语言中,并发编程都是依靠线程池完成的,而线程池的创建方式又有很多,但从大的分类来说,线程池的创建总共分为两大类:手动方式使用 ThreadPoolExecutor 创建线程池和使用 Ex ...

  3. Docker修改默认IP

    Docker修改默认IP 删除原有配置 sudo systemctl stop docker sudo ip link set dev docker0 down sudo brctl delbr do ...

  4. web服务器-nginx默认网站

    web服务器-nginx默认网站 一 默认网站 server { listen 80; server_name localhost; location / { root html; index ind ...

  5. 我写的 Python 代码,同事都说好

    原文链接: 我写的 Python 代码,同事都说好 人生苦短,我用 Python. 程序员的追求就是不写代码,早日财务自由.不对,一不小心把实话说出来了,应该是将代码写得简洁,优雅. Python 程 ...

  6. 74CMS 3.0 SQL注入漏洞后台

    代码审计工具:seay CMS:74CMS3.0 一. 启动环境 1.双击运行桌面phpstudy.exe软件 2.点击启动按钮,启动服务器环境 二.代码审计 1.双击启动桌面Seay源代码审计系统软 ...

  7. 企业应用架构研究系列二:MSF&Scrum 项目管理

    从业软件项目这么多年,在企业应用开发项目中,项目能否成功,是否能按照项目计划有效的推进,是有很强的一套项目管理理论.最早的时候,接触的项目管理的方法论就是微软的MSF(Microsoft Soluti ...

  8. Oracle数据常用的备份与恢复?

    Oracle的备份与恢复有三种标准的模式,大致分为两大类,备份恢复(物理上的)以及导入导出(逻辑上的),而备份恢复又可以根据数据库的工作模式分为非归档模式(Nonarchivelog-style)和归 ...

  9. django中动态新建postgres数据库表

    import psycopg2def create_new_table(table_id): conn = psycopg2.connect(database='Test', user='postgr ...

  10. 细说【json&pickle】dumps,loads,dump,load的区别

    1 json.dumps() json.dumps()是将字典类型转化成字符串类型. import json name_emb = {'a':'1111','b':'2222','c':'3333', ...