论文针对预训练语料和领域分布,以及任务分布之间的差异,提出了DAPT领域适应预训练(domain-adaptive pretraining)和TAPT任务适应预训练(task-adaptive pretraining)两种继续预训练方案,并在医学论文,计算机论文,新闻和商品评价4个领域上进行了测试。想法很简单就是在垂直领域上使用领域语料做继续预训练,不过算是开启了新的训练范式,从之前的pretrain+fintune,到pretrain+continue pretrain+finetune

核心要点主要有以下4个

  • 和预训练差异越大的领域,领域适应继续预训练的效果提升越显著
  • 任务适应预训练轻量好使,效果也不差
  • 领域预训练+任务预训练效果最好,不过成本较高
  • 通过KNN扩展任务语料,能逼近领域预训练的效果

DAPT

首先作者通过每个领域内的Top10K高频词的重合度,来衡量领域之间,以及领域和预训练语料的文本相似度,相似度News>Reviews>Bio>CS。我们预期DAPT的效果会和相似度相关,理论上在相似度低的领域,继续预训练应该带来更大的提升。

训练部分作者复用了Roberta的预训练方案。为了保证4个领域可比,作者通过样本采样,以及不同的batch size保证了4个领域的step相同。为了防止灾难遗忘,作者只在领域数据上继续训练了1个epoch(12.5K steps)。除了News领域,其他领域的继续预训练都带来了MLM Loss的下降。

在下游分类任务微调中,继续训练的模型效果都显著优于原始Roberta,和预训练语料差异更大的领域CS,Bio整体的效果提升更显著,如下

为了剔除更多的训练样本可能带来的效果提升,作者按以上的语料相关性,每个领域都选择了相关性最低的另一个领域的继续预训练模型(¬DAPT),对比在下游微调中的效果,部分场景有提升部分有下降,但是都显著低于对应领域的继续预训练模型,从而进一步证明继续预训练的收益来自对应领域信息的补充。

TAPT

TAPT是使用任务样本直接进行继续训练。Task Adaptive和Domain Adaptive的主要区别是,Task对应的数据集更小训练成本更低,不过因为直接使用任务数据,所以和任务的相关度更高。对应以上DAPT训练1个epoch(12.5K steps), TAPT训练100个epoch,每个epochs使用15%的Random Delete来进行样本增强。

作者对比了只使用DAPT,TAPT以及先使用DAPT+TAPT的效果:整体上DAPT+TAPT的继续预训练效果最好。其中针对更加垂直(和预训练语料相关性更小)的领域DAPT更好。感觉主要是因为领域垂直,TAPT受限于样本量能提供的领域信息不足,容易过拟和。而和预训练语料更相似的新闻领域和评论领域,TAPT的效果甚至超过DAPT,如下

作者进一步尝试了Cross Task Transfer,就是使用相同领域中任务1做继续预训练,然后在任务2上进行微调。效果显著低于使用相同任务的语料做T继续训练,这进一步说明了相同领域不同任务间的语料分布也是存在差异的,所以在部分任务上TAPT的效果要优于DAPT。

那能否在保留当前任务分布的前提下,拓展任务相关语料,解决TAPT样本量不足的问题呢?比较直观的方案就是使用文本Embedding,从相同领域的样本中,使用KNN抽取任务对应的K个相似样本来扩充任务样本。作者使用的是词袋模型VAMPIRE来计算文本表征,对比了不同参数K的效果,500KNN已经逼近DAPT。如果你有耐心>_<的话,KNN配合TAPT确实算是更优的方案,它的预训练成本显著低于DAPT,但又比TAPT的效果以及泛化性要显著更好

领域差异

说了半天继续预训练可以提高下游任务的效果,不过究竟继续预训练干了啥??这部分在作者也没有很详细的证明,所以我们只能借助相关paper来猜想一哈~

  1. 领域词汇/实体/ngram差异: 垂直领域和通用领域的主要差异在专属实体和短语,也就是领域知识信息。继续预训练可以提供这部分的补充信息。不过这其实也challenge了论文复用Roberta的预训练方案并一定是最优方案,可能SpanBert或者ERNIE,甚至K-Bert对应的知识增强,实体掩码方案更合适
  2. 整体语料差异: 除知识之外,常规的文本表达和上下文语境也存在整体差异,可以通过继续与训练来进行调整。
  3. 优化空间分布,提高线性可分性:在之前探测Bert Finetune对向量空间的影响中我们讨论过,微调其实是对预训练文本表征的空间分布进行了调整,使得在下游任务中空间分布更简单更加线性可分,这里猜测继续预训练其实也起到了类似的效果。
  4. 提高模型泛化:在下游任务微调中,模型往往只更新/依赖任务相关的局部信息,而继续预训练目标的设置使得模型能更全面的学习领域/任务相关的上下文知识,一定程度上提高模型的泛化能力,起到更优的bayesian prior的作用

案例

总结下,针对单任务模型,直接使用TAPT成本最低实用性最高,针对领域底层大模型,使用DAPT效果更好。不过使用起来具体使用哪种预训练方案,以及如何避免灾难遗忘,感觉还是要case by case的来看。一些相关的案例有

  • 金融负面主体识别比赛:Rank3的方案就尝试了在任务语料上继续预训练,并且配合实体掩码相关的预训练方案来提升模型效果。
  • 疫情期间民情识别比赛: 作者用比赛数据提供的任务样本,以及任务样本相关的未标注样本进行做curated tapt,平均准确率有1个点左右的提升
  • 淘宝UGC情感分类:评论底层大模型,使用评论领域语料来继续预训练,用于上层的子任务

最近在复现一些比赛方案时,尝试了下在金融负面主体这个任务中引入TAPT,因为是实体相关的情感分类问题,因此在TAPT上使用了Whole Word和Entity粒度结合的MLM作为预训练目标。在使用多任务的基础上,使用TAPT进一步训练后F1进一步有0.2%个点的提升,不过这个提升只有当预训练使用全部语料的时候才显著,如果和下游微调一样保留部分数据用于测试,则不会有显著的效果提升,这里的效果对比更支持上面的提高模型泛化能力这个假设~具体实现详见ClassicSolution/fin_neg_entity

Bert不完全手册8. 预训练不要停!Continue Pretraining的更多相关文章

  1. 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)

    转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...

  2. zz从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史

    从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么 ...

  3. 【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练

    BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言 ...

  4. 预训练语言模型整理(ELMo/GPT/BERT...)

    目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训 ...

  5. 预训练中Word2vec,ELMO,GPT与BERT对比

    预训练 先在某个任务(训练集A或者B)进行预先训练,即先在这个任务(训练集A或者B)学习网络参数,然后存起来以备后用.当我们在面临第三个任务时,网络可以采取相同的结构,在较浅的几层,网络参数可以直接加 ...

  6. 预训练语言模型的前世今生 - 从Word Embedding到BERT

    预训练语言模型的前世今生 - 从Word Embedding到BERT 本篇文章共 24619 个词,一个字一个字手码的不容易,转载请标明出处:预训练语言模型的前世今生 - 从Word Embeddi ...

  7. NLP之预训练

    内容是结合:https://zhuanlan.zhihu.com/p/49271699 可以直接看原文 预训练一般要从图像处理领域说起:可以先用某个训练集合比如训练集合A或者训练集合B对这个网络进行预 ...

  8. Bert不完全手册1. 推理太慢?模型蒸馏

    模型蒸馏的目标主要用于模型的线上部署,解决Bert太大,推理太慢的问题.因此用一个小模型去逼近大模型的效果,实现的方式一般是Teacher-Stuent框架,先用大模型(Teacher)去对样本进行拟 ...

  9. 【算法】Bert预训练源码阅读

    Bert预训练源码 主要代码 地址:https://github.com/google-research/bert create_pretraning_data.py:原始文件转换为训练数据格式 to ...

随机推荐

  1. jenkins页面一直在Please wait while Jenkins is getting ready to work ...

    原因:因为访问官网太慢.我们只需要换一个源,不使用官网的源即可. 1.找到jenkins工作目录 find / -name *.UpdateCenter.xml 2.修改文件中的url,随后重启就行了 ...

  2. 从20s优化到500ms,我用了这三招

    前言 接口性能问题,对于从事后端开发的同学来说,是一个绕不开的话题.想要优化一个接口的性能,需要从多个方面着手. 其实,我之前也写过一篇接口性能优化相关的文章<聊聊接口性能优化的11个小技巧&g ...

  3. NC14661 简单的数据结构

    NC14661 简单的数据结构 题目 题目描述 栗酱有一天在网上冲浪的时候发现了一道很有意思的数据结构题. 该数据结构形如长条形. 一开始该容器为空,有以下七种操作. 1 a从前面插入元素a 2 从前 ...

  4. 如何用Fiddler对APP进行网络测试

    什么是Fiddler Fiddler是一个http协议调试代理工具,它能够记录并检查所有你的电脑和互联网之间的http通讯,设置断点,查看所有的"进出"Fiddler的数据(指co ...

  5. 使用supervisor设置应用开机自启

    安装supervisor: sudo apt install supervisor -y 创建配置文件: sudo vim /etc/supervisor/conf.d/frpc.conf frpc. ...

  6. Docker安装NextCloud使用MySQL

    安装 1.拉取并启动MySQL,最好把数据可目录挂载到宿主机,以便容器被误删后恢复: docker run --name=nextcloud_db \ -e MYSQL_ROOT_PASSWORD=X ...

  7. Windows 远程连接后,自动断开,所有程序都自动关闭(待验证,待更新)

    win+r输入regedit打开注册表编辑SecurityLayer,将值改为2 计算机\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Ter ...

  8. 代码补全——Vim/Neovim中YouCompleteMe添加第三方库的支持

    参考链接: https://github.com/ycm-core/YouCompleteMe#c-family-semantic-completion https://cloud.tencent.c ...

  9. Techempower web框架性能测试第21轮结果发布--asp.net core继续前进

    废话不说,直接上结果: Round 21 results - TechEmpower Framework Benchmarks Techempower benchmark是包含范围最广泛的web框架性 ...

  10. NOI / 2.1基本算法之枚举 1749:数字方格

    描述: 如上图,有3个方格,每个方格里面都有一个整数a1,a2,a3.已知0 <= a1, a2, a3 <= n,而且a1 + a2是2的倍数,a2 + a3是3的倍数, a1 + a2 ...