一、数据准备,先在excel表格上计算每日的波动率;

excel数据为:

二、数据导入:

import pandas as pd
import numpy as np
import akshare as ak
ret=pd.read_excel('text.xlsx',index_col="date")
ret

三、协方差法:

value = 100000000 #投资组合市值为1亿元
R_mean = ret.mean() #计算均值
R_cov = ret.cov() #计算协方差
R_vol = ret.std() #计算标准差
#投资组合各资产权重
weights = np.array([0.15,0.20,0.5,0.05,0.1])
#计算投资组合的期望收益率
Rp_daily = np.sum(weights*R_mean)
#计算投资组合的日波动率
Vp_daily = np.sqrt(np.dot(weights,np.dot(R_cov,weights.T))) def VaR_VCM(value,mu,sig,X,T):
'''
Parameters
----------
value : 资产的价值
mu : 资产的日均收益率
sig : 资产的日均波动率(标准差)
X : 置信水平
T : 持有天数
'''
z = abs(st.norm.ppf(q=1-X))
return np.sqrt(T)*value*(z*sig-mu) VaR99_1day_VCM = VaR_VCM(value,Rp_daily,Vp_daily, 0.99, 1)
VaR99_10day_VCM = VaR_VCM(value,Rp_daily,Vp_daily, 0.99, 10)
VaR95_1day_VCM = VaR_VCM(value,Rp_daily,Vp_daily, 0.95, 1)
VaR95_10day_VCM = VaR_VCM(value,Rp_daily,Vp_daily,0.95, 10) print(f'方差-协方差法1天、99%的VaR:{VaR99_1day_VCM/10000:.2f}万元')
print(f'方差-协方差法10天、99%的VaR:{VaR99_10day_VCM/10000:.2f}万元')
print(f'方差-协方差法1天、95%的VaR:{VaR95_1day_VCM/10000:.2f}万元')
print(f'方差-协方差法10天、95%的VaR:{VaR95_10day_VCM/10000:.2f}万元')

结果:

方差-协方差法1天、99%的VaR:544.65万元
方差-协方差法10天、99%的VaR:1722.32万元
方差-协方差法1天、95%的VaR:385.20万元
方差-协方差法10天、95%的VaR:1218.12万元

四、历史模拟法

value = 100000000 #投资组合市值为1亿元

#投资组合各资产权重
weights = np.array([0.15,0.20,0.5,0.05,0.1])
#历史交易日投资组合的收益率序列
Rp = np.dot(ret,weights)
Rp = pd.DataFrame(Rp,index=ret.index,columns=['投资组合日收益']) def VaR_history(value,ret,X,T):
'''
Parameters
----------
value : 资产的价值
ret : 资产的日收益率序列
X : 置信水平
T : 持有天数
'''
# Numpy 的 percentile 函数,可以直接返回序列相应的分位数
return value*np.sqrt(T)*abs(np.percentile(ret,(1-X)*100)) VaR99_1day_history = VaR_history(value,Rp,0.99,1)
VaR99_10day_history = VaR_history(value,Rp,0.99,10)
VaR95_1day_history = VaR_history(value,Rp,0.95,1)
VaR95_10day_history = VaR_history(value,Rp,0.95,10) print(f'历史模拟法1天、99%的VaR:{VaR99_1day_history/10000:.2f}万元')
print(f'历史模拟法10天、99%的VaR:{VaR99_10day_history/10000:.2f}万元')
print(f'历史模拟法1天、95%的VaR:{VaR95_1day_history/10000:.2f}万元')
print(f'历史模拟法10天、95%的VaR:{VaR95_10day_history/10000:.2f}万元')

结果:

历史模拟法1天、99%的VaR:725.59万元
历史模拟法10天、99%的VaR:2294.51万元
历史模拟法1天、95%的VaR:333.50万元
历史模拟法10天、95%的VaR:1054.62万元

五、蒙特卡洛模拟法

value = 100000000 #投资组合市值为1亿元

#投资组合各资产权重
weights = np.array([0.15,0.20,0.5,0.05,0.1])
m = 10000 #模拟次数
e1 = np.random.standard_t(df=len(ret),size=m) #自由度为收益率数据长度的t分布
#e1 = np.random.standard_normal(size=m) #若服从正态分布,则此代码代替上行代码
R_mean_year = ret.mean()*252 #计算每一资产的年化平均收益率
R_vol_year = ret.std()*np.sqrt(252) #计算每一资产的年化波动率
dt=1/252 #时间间隔
S0=np.ones(len(weights))
S=np.zeros(shape=(m,len(weights))) #存放(模拟次数×资产数量)个模拟价格数据
for i in range(len(weights)):#代入随机过程
S[:,i]=S0[i]*(np.exp((R_mean_year[i]-0.5*R_vol_year[i]**2)*dt+R_vol_year[i]*e1*np.sqrt(dt)))
#每一行∑资产收益率×相应权重就得到资产组合的收益率,一共10000行
Sp_ret=(np.dot(S/S0-1,weights)) #资产组合收益率 #蒙特卡洛模拟法计算VaR
VaR99_1day_MS = value*abs(np.percentile(Sp_ret,1))
VaR99_10day_MS = np.sqrt(10)*VaR99_1day_MS
VaR95_1day_MS = value*abs(np.percentile(Sp_ret,5))
VaR95_10day_MS = np.sqrt(10)*VaR95_1day_MS #由于抽样随机数的原因,结果可能会有不同
print(f'蒙特卡罗模拟法1天、99%的VaR:{VaR99_1day_MS/10000:.2f}万元')
print(f'蒙特卡罗模拟法10天、99%的VaR:{VaR99_10day_MS/10000:.2f}万元')
print(f'蒙特卡罗模拟法1天、95%的VaR:{VaR95_1day_MS/10000:.2f}万元')
print(f'蒙特卡罗模拟法10天、95%的VaR:{VaR95_10day_MS/10000:.2f}万元')

结果:

蒙特卡罗模拟法1天、99%的VaR:712.66万元

蒙特卡罗模拟法10天、99%的VaR:2253.64万元

蒙特卡罗模拟法1天、95%的VaR:510.74万元

蒙特卡罗模拟法10天、95%的VAR:1615.09万元

参考资料:https://blog.csdn.net/mfsdmlove/article/details/126081926 

若从akshare接口获取处理数据

各股票的日收益率:

import pandas as pd
import numpy as np
import akshare as ak
import scipy.stats as st # 读入5支股票 2015-01-01 到 2021-12-31 日收盘价数据
def get_ret(code):
data = ak.stock_zh_a_hist(symbol=code, period="daily", start_date="20150101", end_date='20211231', adjust="")
data.index = pd.to_datetime(data['日期'],format='%Y-%m-%d') #设置日期索引
close = data['收盘'] #日收盘价
close.name = code
ret = np.log(close/close.shift(1)) #日收益率
return ret codes=['000001','000651','300015','600519','000625']
ret = pd.DataFrame()
for code in codes:
ret_ = get_ret(code)
ret = pd.concat([ret,ret_],axis=1)
ret = ret.dropna()

多资产VAR风险--基于python处理的更多相关文章

  1. 基于python深度学习的apk风险预测脚本

    基于python深度学习的apk风险预测脚本 为了有效判断安卓apk有无恶意操作,利用python脚本,通过解包apk文件,对其中xml文件进行特征提取,通过机器学习构建模型,预测位置的apk包是否有 ...

  2. selenium2自动化测试实战--基于Python语言

    自动化测试基础 一. 软件测试分类 1.1 根据项目流程阶段划分软件测试 1.1.1 单元测试 单元测试(或模块测试)是对程序中的单个子程序或具有独立功能的代码段进行测试的过程. 1.1.2 集成测试 ...

  3. 符号执行-基于python的二进制分析框架angr

    转载:All Right 符号执行概述 在学习这个框架之前首先要知道符号执行.符号执行技术使用符号值代替数字值执行程序,得到的变量的值是由输入变 量的符号值和常量组成的表达式.符号执行技术首先由Kin ...

  4. Websocket - Websocket原理(握手、解密、加密)、基于Python实现简单示例

    一.Websocket原理(握手.解密.加密) WebSocket协议是基于TCP的一种新的协议.WebSocket最初在HTML5规范中被引用为TCP连接,作为基于TCP的套接字API的占位符.它实 ...

  5. 看我如何基于Python&Facepp打造智能监控系统

    由于种种原因,最近想亲自做一个基于python&facepp打造的智能监控系统. 0×00:萌芽 1:暑假在家很无聊 想出去玩,找不到人.玩个lol(已卸载),老是坑人.实在是无聊至极,不过, ...

  6. TriAquae 是一款由国产的基于Python开发的开源批量部署管理工具

    怀着鸡动的心情跟大家介绍一款国产开源运维软件TriAquae,轻松帮你搞定大部分运维工作!TriAquae 是一款由国产的基于Python开发的开源批量部署管理工具,可以允许用户通过一台控制端管理上千 ...

  7. 通过nginx搭建基于python的web环境

    前言: 在搭建开始前,我们先来梳理下web服务工作流程,先看下图: 1.用户(PC)向web服务器发起http请求 2.web服务器判断用户请求文件是否为静态文件,是则直接读取静态文件并返回给用户,不 ...

  8. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  9. 基于Python+Django的Kubernetes集群管理平台

    ➠更多技术干货请戳:听云博客 时至今日,接触kubernetes也有一段时间了,而我们的大部分业务也已经稳定地运行在不同规模的kubernetes集群上,不得不说,无论是从应用部署.迭代,还是从资源调 ...

  10. 关于《selenium2自动测试实战--基于Python语言》

    关于本书的类型: 首先在我看来技术书分为两类,一类是“思想”,一类是“操作手册”. 对于思想类的书,一般作者有很多年经验积累,这类书需要细读与品位.高手读了会深有体会,豁然开朗.新手读了不止所云,甚至 ...

随机推荐

  1. .net core 中 WebApiClientCore的使用

    WebApiClient 接口注册与选项 1 配置文件中配置HttpApiOptions选项 配置示例 "IUserApi": { "HttpHost": &q ...

  2. 看起来简单实际上却很牛的KMP算法:LeetCode572-另一棵树的子树

    题目描述 给定两个非空二叉树 s 和 t,检验 s 中是否包含和 t 具有相同结构和节点值的子树.s 的一个子树包括 s 的一个节点和这个节点的所有子孙.s 也可以看做它自身的一棵子树. 暴力解法 从 ...

  3. MongoDB从入门到实战之MongoDB快速入门

    前言 上一章节主要概述了MongoDB的优劣势.应用场景和发展史.这一章节将快速的概述一下MongoDB的基本概念,带领大家快速入门MongoDB这个文档型的NoSQL数据库. MongoDB从入门到 ...

  4. C语言 根据掩码计算网段的起止ip

    原文地址:https://www.yuque.com/docs/share/85a26263-484a-42f6-880b-2b511ae1bd20?# 根据ipv4掩码计算 #include < ...

  5. 【转载】EXCEL VBA 选取非连续的单元格区域——Areas集合

    出处:http://www.360doc.com/content/21/1113/17/77710807_1004011085.shtml 前面我们讲的大多是**并操作单个的单元格,或者是连续的单元格 ...

  6. CH579-Lwip-2.12移植

    代码可以参考以下链接:https://gitee.com/maji19971221/lwip-routine Lwip可以在以下链接下载:http://download.savannah.gnu.or ...

  7. python基础练习题 经常更新

    小练习 1.打印出jason l1 = [11, 22, 'kevin', ['tony', 'jerry', [123, 456, 'jason']]] # print(l1[3][2][2]) l ...

  8. S2-052 CVE-2017-9805 远程代码执行

    漏洞名称 S2-052 CVE-2017-9805 远程代码执行 利用条件 Struts 2.1.6 - Struts 2.3.33 Struts 2.5 - Struts 2.5.12 漏洞原理 S ...

  9. Java基础篇——IO流

    流 内存和存储设备之间传输数据的通道 流的分类 按方向划分 输入流(读):存储设备→内存 输出流(写):内存→存储设备 按单位划分. 字节流:以字节为单位,可以读写所有数据 字符流:以字符为单位,只能 ...

  10. Mac对文件夹加密

    一.打开磁盘工具 电脑左上角文件->新建映像->基于文件夹新建映像->选择相对应的文件夹,进行aes加密->输入加密密码 然后保存文件就好了