论文信息

论文标题:Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering
论文作者:Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, Mingyi Hong
论文来源:2016, ICML
论文地址:download
论文代码:download

1 Introduction

  为了恢复“聚类友好”的潜在表示并更好地聚类数据,我们提出了一种联合 DR (dimensionality reduction) 和 K-means 的聚类方法,通过学习深度神经网络(DNN)来实现 DR。

2 Background and Related Works

2.1 Kmeans

  给定样本集 $\left\{\boldsymbol{x}_{i}\right\}_{i=1, \ldots, N}$ ,$\boldsymbol{x}_{i} \in \mathbb{R}^{M}$。聚类的任务是将 $N$ 个数据样本分成 $K$ 类。

  K-Means 优化的是下述损失函数:

    $\begin{array}{l}\underset{\boldsymbol{M} \in \mathbb{R}^{M \times K},\left\{\boldsymbol{s}_{i} \in \mathbb{R}^{K}\right\}}{\text{min}} \quad & \sum_{i=1}^{N}\left\|\boldsymbol{x}_{i}-\boldsymbol{M} \boldsymbol{s}_{i}\right\|_{2}^{2} \\\text { s.t. } & s_{j, i} \in\{0,1\}, \mathbf{1}^{T} \boldsymbol{s}_{i}=1 \quad \forall i, j,\end{array}  \quad\quad\quad(1)$

  其中,

    • $\boldsymbol{s}_{i}$ 是样本 $x_i$ 的聚类分配向量;
    • $s_{j, i}$ 是 $\boldsymbol{s}_{i}$ 的第 $j$ 个元素;
    • $\boldsymbol{m}_{k}$ 代表着第 $k$ 个聚类中心;

2.2 joint DR and Clustering

  考虑生成模型的数据样本生成 $\boldsymbol{x}_{i}=\boldsymbol{W} \boldsymbol{h}_{i}$,其中 $\boldsymbol{W} \in \mathbb{R}^{M \times R}$ 、$\boldsymbol{h}_{i} \in \mathbb{R}^{R}$,并且 $R \ll M$ 。假设数据集群在潜在域中被很好地分离出来 ( $\boldsymbol{h}_{i}$)
,联合优化问题如下:

    $\begin{array}{l}\underset{\boldsymbol{M},\left\{\boldsymbol{s}_{i}\right\}, \boldsymbol{W}, \boldsymbol{H}}{\text{min }}&\|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2}+\lambda \sum\limits_{i=1}^{N}\left\|\boldsymbol{h}_{i}-\boldsymbol{M} \boldsymbol{s}_{i}\right\|_{2}^{2} \quad+r_{1}(\boldsymbol{H})+r_{2}(\boldsymbol{W}) \\\text { s.t. } &s_{j, i} \in\{0,1\}, \mathbf{1}^{T} \boldsymbol{s}_{i}=1 \forall i, j,\end{array}$

  其中,$r_1$ 和 $r_2$ 是正则化项;

  

3 Method

  目标函数:
    $\begin{array}{l} \underset{\mathcal{W}, \mathcal{Z},\mathcal{M},{s_i}}{\text{min}}& \sum_{i=1}^{N}\left(\ell\left(\boldsymbol{g}\left(\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)\right), \boldsymbol{x}_{i}\right)+\frac{\lambda}{2}\left\|\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)-\boldsymbol{M} \boldsymbol{s}_{i}\right\|_{2}^{2}\right)\\\text { s.t. }  &\quad s_{j, i} \in\{0,1\}, \quad  \mathbf{1}^{T} s_{i}=1 \quad\forall i, j \end{array}$

   其中:

    • $\ell(\boldsymbol{x}, \boldsymbol{y})=\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$,同时也可以考虑 $l_1-norm$ ,或者 KL 散度;
    • $f$ 和 $g$ 分别代表编码和解码的过程;

  算法框架:

  

4 Optimization Procedure

4.1. Initialization via Layer-wise Pre-Training

  首先通过预训练自编码器得到潜在表示(bottleneck layer 的输出),然后在潜在表示上使用 K-means 得到聚类中心 $\boldsymbol{M}$ 和聚类分配向量 $s_{i}$。

4.2. Alternating Stochastic Optimization

4.2.1 Update network parameters

  固定 $\left(M,\left\{s_{i}\right\}\right)$,优化 $(\mathcal{W}, \mathcal{Z})$,那么该问题变为:

    $\underset{\mathcal{W}, \mathcal{Z}}{\text{min }} L^{i}=\ell\left(\boldsymbol{g}\left(\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)\right), \boldsymbol{x}_{i}\right)+\frac{\lambda}{2}\left\|\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)-\boldsymbol{M} \boldsymbol{s}_{i}\right\|_{2}^{2}$

  对于 $(\mathcal{W}, \mathcal{Z})$ 的更新可以借助于反向传播。

4.2.2 Update clustering parameters

  固定网络参数和聚类质心矩阵 $M$,当前样本的聚类分配向量 $s_i$:

    $s_{j, i} \leftarrow\left\{\begin{array}{ll}1, & \text { if } j=\underset{k=\{1, \ldots, K\}}{\arg \min }\left\|\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)-\boldsymbol{m}_{k}\right\|_{2}, \\0, & \text { otherwise }\end{array}\right.$

  当固定 $\boldsymbol{s}_{i}$ 和 $\mathcal{X}=(\mathcal{W}, \mathcal{Z})$ 时,更新 $M$ :

    $\boldsymbol{m}_{k}=\left(1 /\left|\mathcal{C}_{k}^{i}\right|\right) \sum\limits_{i \in \mathcal{C}_{k}^{i}} \boldsymbol{f}\left(\boldsymbol{x}_{i}\right)$

  其中,$\mathcal{C}_{k}^{i}$ 是分配给从第一个样本到当前样本 $i$ 的聚类 $k$ 的样本的记录索引集。

  虽然上面的更新是直观的,但对于在线算法来说可能是有问题的,因为已经出现的历史数据(即 $\boldsymbol{x_{1}}, \ldots, \boldsymbol{x}_{i}$)可能不足以建模全局集群结构,而初始 $s_i$ 可能远远不正确。

  因此,简单地平均当前分配的样本可能会导致数值问题。我们没有做上述操作,而是使用(Sculley,2010)中的想法自适应地改变更新的学习速率来更新 $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{K}$。

  直觉很简单:假设 cluster 在包含的数据样本数量上是大致是平衡的。然后,在为多个样本更新 $M$ 之后,应该更优雅地更新已经有许多分配成员的集群的质心,同时更积极地更新其他成员,以保持平衡。为了实现这一点,让 $c_{k}^{i}$ 是算法在处理传入的样本 $x_i$ 之前分配一个样本给集群 $k$ 的次数,并通过一个简单的梯度步骤更新 $m_k$:

    $\boldsymbol{m}_{k} \leftarrow \boldsymbol{m}_{k}-\left(1 / c_{k}^{i}\right)\left(\boldsymbol{m}_{k}-\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)\right) s_{k, i}\quad\quad\quad(8)$

  其中,$1 / c_{k}^{i}$ 用于控制学习率。上述 $M$ 的更新也可以看作是一个SGD步骤,从而产生了在 Algorithm 1 中总结的一个整体的交替块SGD过程。请注意,一个 epoch 对应于所有数据样本通过网络的传递。

  

5 Experiments

聚类

  

6 Conclusion

  在这项工作中,我们提出了一种联合DR和K-means聚类方法,其中DR部分是通过学习一个深度神经网络来完成的。我们的目标是自动将高维数据映射到一个潜在的空间,其中K-means是一个合适的聚类工具。我们精心设计了网络结构,以避免琐碎和无意义的解决方案,并提出了一个有效的和可扩展的优化程序来处理所制定的具有挑战性的问题。综合和实际数据实验表明,该算法在各种数据集上都非常有效。

修改历史

2022-06-28 创建文章

论文解读目录

论文解读(DCN)《Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering》的更多相关文章

  1. 论文解读(SUGRL)《Simple Unsupervised Graph Representation Learning》

    Paper Information Title:Simple Unsupervised Graph Representation LearningAuthors: Yujie Mo.Liang Pen ...

  2. 论文解读(GSAT)《Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism》

    论文信息 论文标题:Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism论文作者:Siqi ...

  3. 论文解读(GROC)《Towards Robust Graph Contrastive Learning》

    论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Ro ...

  4. 论文解读(ClusterSCL)《ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs》

    论文信息 论文标题:ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs论文作者:Yanling Wang, Jing ...

  5. 论文解读《Understanding the Effective Receptive Field in Deep Convolutional Neural Networks》

    感知野的概念尤为重要,对于理解和诊断CNN网络是否工作,其中一个神经元的感知野之外的图像并不会对神经元的值产生影响,所以去确保这个神经元覆盖的所有相关的图像区域是十分重要的:需要对输出图像的单个像素进 ...

  6. 论文解读第三代GCN《 Deep Embedding for CUnsupervisedlustering Analysis》

    Paper Information Titlel:<Semi-Supervised Classification with Graph Convolutional Networks>Aut ...

  7. CVPR2019 | Mask Scoring R-CNN 论文解读

    Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...

  8. Gaussian field consensus论文解读及MATLAB实现

    Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction ...

  9. zz扔掉anchor!真正的CenterNet——Objects as Points论文解读

    首发于深度学习那些事 已关注写文章   扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 ​关注他 JustDoIT 等 ...

随机推荐

  1. fs本地文件系统

    node 中有一个内置模块,fs全称flie system 文件系统,可以对本地文件执行增删改查操作(以下为异步相关API) 先引入内置模块   var fs=require('fs') 1,增: w ...

  2. ctx.createCircularGradient is not a function

       正确      const grd = ctx.createCircularGradient(75, 50, 50)     grd.addColorStop(0, 'red')     grd ...

  3. npm 报错This is probably not a problem with npm. There is likely additional logging output above.

    报错This is probably not a problem with npm. There is likely additional logging output above. 安装了一个插件后 ...

  4. QQ浏览器X5内核问题汇总 转

    常常被人问及微信中使用的X5内核的问题,其实我也不是很清楚,只知道它是基于android 4.2的webkit,版本号是webkit 534.今天正好从X5团队拿到了一份问题汇总,梳理下发出来,给各位 ...

  5. 倒计时第3天!Google Summer of Code报名即将截止!(Casbin社区还有空缺名额)

    Google Summer of Code 介绍 Google Summer of Code ( GSoC ,即 Google 编程之夏)是 Google (谷歌)组织并提供经费,面对全球在读学生的在 ...

  6. 增删改查- 万能map- 模糊查询

    1.编写接口 2.编写对应的mapper种的sql语句 3.测试 接口 public interface UserDao { List<User> getUserList(); //根据I ...

  7. react-router@6 版本初体验

    最近使用了一下react-router@6 版本感觉有很大的改动,记录一下. React Router v6 makes heavy use of React hooks, so you'll nee ...

  8. redis 添加hash报错

    报错信息 127.0.0.1:6379> hset ii name ss (error) MISCONF Redis is configured to save RDB snapshots, b ...

  9. 【CSAPP】Attack Lab实验笔记

    attacklab这节玩的是利用一个字符串进行缓冲区溢出漏洞攻击,就小时候想象中黑客干的事儿. 做题的时候好几次感叹这些人的脑洞,"这都可以攻击?还能这么注入?这还可能借力打力?" ...

  10. Linux命令篇 - grep 命令

    grep grep searches the named input FILEs (or standard input if no files are named, or if a single hy ...