P2154 虔诚的墓主人 题解

原题传送门

题意

在 \(n\times m\) 一个方格上给你 \(w\) 个点,求方格里每个点正上下左右各选 \(k\) 个点的方案数。

\(1 \le N, M \le 1,000,000,000,0 \le x_i \le N,0 \le y_i \le M,1 \le W \le 100,000,1 \le k \le 10\)。

思路

首先看到 \(N,M\) 这么大,肯定要先离散化一下。

然后考虑怎么求方案数。

我们先对离散化后的点排个序,然后考虑两个 \(x\) 相同的点 \(x,y1\) 和 \(x,y2\) 之间的所有点的方案数。

显然是:

\[C_{y1\_UP}^{k}\times C_{y2\_DOWN}^{k}\times \sum_{y1<l<y2}C_{l\_LEFT}^{k}\times C_{l\_RIGHT}^{k}
\]

你们意会一下。

观察这个式子,\(C_{y1\_UP}^{k}\times C_{y2\_DOWN}^{k}\) 当前已知,可以用前缀和维护 \(\sum C_{l\_LEFT}^{k}\times C_{l\_RIGHT}^{k}\)。

那么我们就开一个树状数组,维护前 \(i\) 行的 \(C_{l\_LEFT}^{k}\times C_{l\_RIGHT}^{k}\) 之和,每次碰到一个点 \(x,yy\) 时把当前行的影响清除,再令 \(yy\_LEFT+1,yy\_RIGHT-1\),再重新计入前缀和。

可以参考代码中 Solve 函数中变量 \(u\) 的求法。

时间复杂度 \(O(nlogn)\)。

我这个菜鸡居然因为取模取错了调了两节课。

Code

#include <bits/stdc++.h>
#define _for(i,a,b) for(ll i=a;i<=b;++i)
#define for_(i,a,b) for(ll i=a;i>=b;--i)
#define ll long long
using namespace std;
const ll N=1e5+10,P=2147483648;
ll n,m,w,k,q[N],h[N],z[N],y[N],ans;
struct tree{ll x,y;}t[N];
inline ll rnt(){
ll x=0,w=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*w;
}
namespace SZSZ{
/*树状数组*/
ll b[N];
inline ll lowbit(ll x){return x&-x;}
inline void UpDate(ll x,ll y){
while(x<=w){
b[x]=(b[x]+y)%P;
x+=lowbit(x);
}
return;
}
inline ll Query(ll x){
if(x==0)return 0;
ll sum=0;
while(x){
sum=(sum+b[x])%P;
x-=lowbit(x);
}
return sum;
}
}
namespace LISAN{
/*离散化*/
vector<ll>xx,yy;
inline bool cmp(tree a,tree b){
if(a.x==b.x)return a.y<b.y;
return a.x<b.x;
}
inline void Add(ll x,ll y){
xx.push_back(x);
yy.push_back(y);
return;
}
inline void LiSan(){
sort(xx.begin(),xx.end());
sort(yy.begin(),yy.end());
xx.erase(unique(xx.begin(),xx.end()),xx.end());
yy.erase(unique(yy.begin(),yy.end()),yy.end());
_for(i,1,w){
t[i].x=lower_bound(xx.begin(),xx.end(),t[i].x)-xx.begin()+1;
t[i].y=lower_bound(yy.begin(),yy.end(),t[i].y)-yy.begin()+1;
++h[t[i].x],++y[t[i].y];
}
sort(t+1,t+w+1,cmp);
return;
}
}
namespace SOLVE{
ll c[N*20][20]={0};
/*预处理组合数*/
inline void PreC(){
c[0][0]=1;
_for(i,1,w){
c[i][0]=1;
_for(j,1,min(k,i))
c[i][j]=(c[i-1][j]+c[i-1][j-1])%P;
}
}
/*求解*/
inline ll Solve(){
PreC();
_for(i,1,w-1){
++q[t[i].x];
++z[t[i].y];
if(t[i].x==t[i+1].x&&q[t[i].x]>=k&&h[t[i].x]-q[t[i].x]>=k){
ll up=c[q[t[i].x]][k];
ll dn=c[h[t[i].x]-q[t[i].x]][k];
ll ri=SZSZ::Query(t[i+1].y-1)-SZSZ::Query(t[i].y);
ans+=((up*dn+P)%P*ri+P)%P;
ans%=P;
}
ll u=((c[z[t[i].y]][k]*c[y[t[i].y]-z[t[i].y]][k]+P)%P-(SZSZ::Query(t[i].y)-SZSZ::Query(t[i].y-1)+P)%P+P)%P;
SZSZ::UpDate(t[i].y,u);
}
return ans;
}
}
int main(){
n=rnt(),m=rnt(),w=rnt();
_for(i,1,w){
t[i].x=rnt(),t[i].y=rnt();
LISAN::Add(t[i].x,t[i].y);
}
k=rnt();
LISAN::LiSan();
printf("%lld\n",SOLVE::Solve());
return 0;
}
/* */

「题解报告」P2154 虔诚的墓主人的更多相关文章

  1. 「题解报告」 P3167 [CQOI2014]通配符匹配

    「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...

  2. 「题解报告」P4577 [FJOI2018]领导集团问题

    题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降 ...

  3. 「题解报告」SP16185 Mining your own business

    题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...

  4. 「题解报告」Blocks

    P3503 Blocks 题解 原题传送门 思路 首先我们可以发现,若 \(a_l\) ~ \(a_r\) 的平均值大于等于 \(k\) ,则这个区间一定可以转化为都大于等于 \(k\) 的.我们就把 ...

  5. 「题解报告」P3354

    P3354 题解 题目传送门 一道很恶心的树形dp 但是我喜欢 题目大意: 一片海旁边有一条树状的河,入海口有一个大伐木场,每条河的分叉处都有村庄.建了伐木场的村庄可以直接处理木料,否则要往下游的伐木 ...

  6. 「题解报告」CF1067A Array Without Local Maximums

    大佬们的题解都太深奥了,直接把转移方程放出来让其他大佬们感性理解,蒟蒻们很难理解,所以我就写了一篇让像我一样的蒟蒻能看懂的题解 原题传送门 动态规划三部曲:确定状态,转移方程,初始状态和答案. --神 ...

  7. 「题解报告」P7301 【[USACO21JAN] Spaced Out S】

    原题传送门 神奇的5分算法:直接输出样例. 20分算法 直接把每个点是否有牛的状态DFS一遍同时判断是否合法,时间复杂度约为\(O(2^{n^2})\)(因为有判断合法的剪枝所以会比这个低).而在前四 ...

  8. 【Luogu】P2154虔诚的墓主人(树状数组)

    题目链接 这题就是考虑我们有这样一个情况

  9. bzoj1227 P2154 [SDOI2009]虔诚的墓主人

    P2154 [SDOI2009]虔诚的墓主人 组合数学+离散化+树状数组 先看题,结合样例分析,易得每个墓地的虔诚度=C(正左几棵,k)*C(正右几棵,k)*C(正上几棵,k)*C(正下几棵,k),如 ...

随机推荐

  1. Redis的使用(二)

    一.redis简单应用 其实在写这个redis专题时我想了很久,我觉得redis没什么好说的,因为现在是个人都会用redis,但是我在写netty专题时发现,netty里面很多东西和概念有很多跟red ...

  2. Redis 中的事务分析,Redis 中的事务可以满足ACID属性吗?

    Redis 中的事务 什么是事务 1.原子性(Atomicity) 2.一致性(Consistency) 3.隔离性(Isolation) 4.持久性(Durability) 分析下 Redis 中的 ...

  3. 使用AndroidKiller进行APK反编译

    安装环境 JDK 最好用JDK8,问就是坑太多了 Android Studio 官网安装即可,安装教程如下 https://www.runoob.com/android/android-studio- ...

  4. java中JVM和JMM之间的区别

    一 jvm结构 jvm的内部结构如下图所示,这张图很清楚形象的描绘了整个JVM的内部结构,以及各个部分之间的交互和作用. 1 Class Loader(类加载器)就是将Class文件加载到内存,再说的 ...

  5. Python|range函数用法完全解读

    写在前面的一些过场话: 迭代器是 23 种设计模式中最常用的一种(之一),在 Python 中随处可见它的身影,我们经常用到它,但是却不一定意识到它的存在.在关于迭代器的系列文章中(链接见文末),我至 ...

  6. tail -f 、tail -F、tailf的区别

    三者经常在工作中会使用到,以下是三条命令的区别,帮忙大家理解:1.tail -f 等同于--follow=descriptor,根据文件描述符进行追踪,当文件改名或被删除,追踪停止,但是不是断开. 2 ...

  7. FFT 学习笔记(自认为详细)

    引入 什么是 \(\text{FFT}\) ? 反正我看到 \(\text{wiki}\) 上是一堆奇怪的东西. 快速傅里叶变换(英语:Fast Fourier Transform, FFT),是快速 ...

  8. 2022宁波市第五届网络安全大赛MISC方向部分wp

    BlackAndWhite 1. 得到了三百多张黑白颜色的图片,将白色图片转为数字0,黑色图片转为数字1,得到二进制字符串 01100110011011000110000101100111011110 ...

  9. MQ系列2:消息中间件的技术选型

    1 背景 在高并发.高消息吞吐的互联网场景中,我们经常会使用消息队列(Message Queue)作为基础设施,在服务端架构中担当消息中转.消息削峰.事务异步处理 等职能. 对于那些不需要实时响应的的 ...

  10. 聊一聊 C# 后台GC 到底是怎么回事?

    一:背景 写这一篇的目的主要是因为.NET领域内几本关于阐述GC方面的书,都是纯理论,所以懂得人自然懂,不懂得人也没法亲自验证,这一篇我就用 windbg + 源码 让大家眼见为实. 二:为什么要引入 ...