大家好,我是咔咔 不期速成,日拱一卒

项目中准备使用ElasticSearch,之前只是对ElasticSearch有过简单的了解没有系统的学习,本系列文章将从基础的学习再到深入的使用。

咔咔之前写了一份死磕MySQL文章,如今再入一个系列玩转ElasticSearch。

本期文章会带给大家学习ElasticSearch的基础入门,先把基础学会再深入学习更多的知识点。

一、基本概念

文档(Document)

ElasticSearch是面向文档的,文档是所有可搜索数据的最小单位,例如MySQL的一条数据记录

文档会被序列化成为json格式,保存在ElasticSearch中

每个文档都有一个唯一ID,例如MySQL中的主键ID

JSON文档

一篇文档包括了一系列的字段,例如数据中的一条记录

json文档,格式灵活,不需要预先定义格式

在上期文章中把csv文件格式文件通过Logstash转化为json存储到ElasticSearch中

文档的元数据

index :文档所属的索引名

type:文档所属类型名

id:文档唯一ID

source:文档的原始JSON数据

version:文档的版本信息

score:相关性分数

索引

索引是文档的容器,是一类文档的结合,每个索引都有自己的mapping定义,用于定义包含的文档的字段和类型

每个索引都可以定义mapping,setting,mapping是定义字段类型,setting定义不同的数据分布

{
  "movies" : {
    "aliases" : { },
    "mappings" : {
      "properties" : {
        "@version" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "genre" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "id" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "title" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "year" : {
          "type" : "long"
        }
      }
    },
    "settings" : {
      "index" : {
        "creation_date" : "1641637408626",
        "number_of_shards" : "1",
        "number_of_replicas" : "1",
        "uuid" : "gf0M2BgnStGZZHsIJD6otQ",
        "version" : {
          "created" : "7010099"
        },
        "provided_name" : "movies"
      }
    }
  }
}

Type

7.0之前,一个Index可以设置多个type,所以当时大多数资料显示的都是type类型与数据库的表

7.0之后,一个索引只能创建一个type“_doc”

若不好理解,可以对比MySQL类比一下

Databases ElasticSearch
Table Index(Type)
Row Document
Column Filed
Schema Mapping
Sql Dsl

节点

节点是一个ElasticSearch的实例,本质上就是java的一个进程,一台机器可以运行多个ElasticSearch进程,但生产环境下还是建议一台服务器运行一个ElasticSearch实例

每个节点都有名字,通过配置文件配置,或者启动时 -E node.name=node1

每个节点在启动后,会分配一个UID,保存在data目录下

主节点:master

默认情况下任何一个集群中的节点都有可能被选为主节点,职责是创建索引、删除索引、跟踪集群中的节点、决定分片分配给相应的节点。索引数据和搜索查询操作会占用大量的内存、cpu、io资源。因此,为了保证一个集群的稳定性,应该主动分离主节点跟数据节点。

数据节点:data

看名字就知道是存储索引数据的节点,主要用来增删改查、聚合操作等。数据节点对内存、cpu、io要求比较高,在优化的时候需要注意监控数据节点的状态,当资源不够的时候,需要在集群中添加新的节点。

负载均衡节点:client

该节点只能处理路由请求,处理搜索,分发索引等操作,该节点类似于Nginx的负载均衡处理,独立的客户端节点在一个比较大的集群中是非常有用的,它会协调主节点、数据节点、客户端节点加入集群的状态,根据集群的状态可以直接路由请求。

预处理节点:ingest

在索引数据之前可以先对数据做预处理操作,所有节点其实默认都是支持ingest操作的,也可以专门将某个节点配置为ingest节点。

分片

分片分为主分片,副本分片

主分片:用以解决数据水平扩展的问题,将数据分布到集群内的所有节点上,一个分片是一个运行的Lucene(搜索引擎)实例,主分片数在创建时指定,后续不允许修改,除非Reindex

副本:用以解决数据高可用的问题,可以理解为主分片的拷贝,增加副本数,还可以在一定程度上提高服务的可用性。

在生产环境中分片的设置有何影响

分片数设置过小会导致无法增加节点实现水平扩展,单个分片数据量太大,导致数据重新分配耗时。假设你给索引设置了三个主分片 ,这时你给集群加了几个实例,索引也只能在三台服务器上

分片数设置过大导致搜索结果相关性打分,影响统计结果的准确性,单个节点上过多的分片,会导致资源浪费,同时也会影响性能

从ElasticSearch7.0开始,默认的主分片设置为1,解决了over-sharding的问题

查看集群健康状态

执行接口

get _cluster/health

green:主分片与副本都正常分配

yellow:主分片全部正常分配,有副本分片未能正常分配

red:有主分片未能分配,当服务器的磁盘容量超过85%时创建了一个索引

二、Result Api

接口 作用
get movies 查看索引相关信息
get movies/_count 查看索引的文档总数
post movies/_search 查看前10条文档
get /_cat/indices/movies?v&s=index 获取索引状态
get /_cat/indices?v&health=green 查看状态为绿色的索引
get /_cat/indices?v&s=docs.count:desc 根据文档数据倒序
get /_cat/indices/kibana*?pri&v&h=health,index,pri,rep,docs,count,mt 查看索引具体字段
get /_cat/indices?v&h=i,tm&s=tm:desc 查看索引所占的内存
get _cluster/health 查看集群健康状态

三、文档的基本CRUD操作

create 一个文档

支持自动生成文档ID和指定文档ID两种方式

通过调用post /movies/_doc 系统会自动生成文档ID

使用http put movies/_create/1 创建时,url中显示指定_create ,如果该id的文档已经存在,操作失败

Index 文档

Index和Create区别在于,如果文档不存在,就索引新的文档。否则现有文档会被删除,新的文档被索引并且版本信息+1

可以看到之前的文档已经被更新为最新的niuniu,是因为之前就存在文档id=1,并且能看到版本信息也加了1

update 文档

update方法不会删除原有文档,而是实现真正的数据更新

get 一个文档

检索文档找到,返回状态码200,文档元信息,这里需要注意一下版本信息,同一个id的文档,即被删除版本号也会不断增加

找不到文档,返回状态码404

Bulk Api

支持在一次Api调用中,对不同的索引进行操作,支持index、create、update、delete

可以在url中指定index,也可以在请求的payload中进行

操作中单条操作失败,不会影响其它继续操作,并且返回结果包括了每一条操作执行的结果

多索引bulk批量操作案例:

post _bulk
{"index":{"_index" : "test1","_id" : "1"}}
{"name":"kaka_bulk"}
{"delete":{"_index":"test1","_id":"2"}}
{"create":{"_index":"test2","_id":"3"}}
{"name":"kaka_create"}
{"update":{"_id":"1","_index":"test1"}}
{"doc":{"name":"kaka_bulk"}}

返回结果

{
  "took" : 165,
  "errors" : false,
  "items" : [
    {
      "index" : {
        "_index" : "test1",
        "_type" : "_doc",
        "_id" : "1",
        "_version" : 1,
        "result" : "created",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 0,
        "_primary_term" : 1,
        "status" : 201
      }
    },
    {
      "delete" : {
        "_index" : "test1",
        "_type" : "_doc",
        "_id" : "2",
        "_version" : 1,
        "result" : "not_found",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 1,
        "_primary_term" : 1,
        "status" : 404
      }
    },
    {
      "create" : {
        "_index" : "test2",
        "_type" : "_doc",
        "_id" : "3",
        "_version" : 1,
        "result" : "created",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 0,
        "_primary_term" : 1,
        "status" : 201
      }
    },
    {
      "update" : {
        "_index" : "test1",
        "_type" : "_doc",
        "_id" : "1",
        "_version" : 1,
        "result" : "noop",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "status" : 200
      }
    }
  ]
}

这里需要大家注意:bulk api 对json语法有严格的要求,每个json串不能换行,只能放一行,同时一个json和另一个json串之间必须有一个换行。

单索引bulk批量操作

如果操作的是同一个索引时,bulk语句还可以变化为以下方式

post test1/_bulk
{"index":{"_id" : "1"}}
{"name":"kaka_bulk"}
{"delete":{"_id":"2"}}
{"create":{"_id":"3"}}
{"name":"kaka_create"}
{"update":{"_id":"1"}}
{"doc":{"name":"kaka_bulk"}}

单条的返回结果可以自己尝试一下,可以看到单索引bulk跟多索引bulk之间的区别显而易见。

bulk size的最佳大小

bulk request 会加载到内存里,如果太大的话,性能反而会下降,因此需要不断尝试最佳的bulk size,大小最好控制在5~15MB即可,至于条数需要根据当下数据量再调整。

批量读取_mget

道理跟MySQL都一样,只要是批量在一定合理的范围内都会减少网络连接所产生的开销,从而提高性能

需要注意批量获取每个json之间是需要逗号隔开的,否则会报json解析异常

get /_mget
{
  "docs": [
    {"_index":"test","_id":"1"},
    {"_index":"movies","_id":"2"}
    ]
}

批量搜索_msearch

post kibana_sample_data_ecommerce/_msearch
{}
{"query":{"match_all":{}},"size":1}
{"index":"kibana_smaple_sample_data_flights"}
{"query":{"match_all":{}},"size":1}

常见的错误状态

问题 原因
无法连接 网络故障、集群异常
连接无法关闭 网络故障、节点出错
429 集群过于繁忙
4xx 请求体格式错误
500 集群内部错误

四、倒排索引

倒排索引是由单词词典、倒排列表两部分组成,单词词典记录的所有文档的单词,记录单词倒排列表的关联关系

倒排列表记录了单词对应的文档结合,由倒排索引项组成,分别为文档ID、词频TF、位置、偏移

案例:

文档ID 文档内容
1 kaka ElasticSearch
2 ElasticSearch kaka
3 ElasticSearch niuniu

倒排列表就为:

文档ID 词频 位置 偏移量
1 1 1 <10,23>
2 1 0 <0,13>
3 1 0 <0,13>

ElasticSearch可以为json文档中的每个字段设置自己的倒排索引,也可以指定某些字段不做倒排索引

若不做倒排索引,虽可以节省存储空间,但字段无法被搜索

五、使用Analyzer进行分词

首先你得知道什么是分词:Analysis把全文本转换为一系列单词的过程叫做分词

Analysis通过Analyzer实现的,可以通过ElasticSearch内置的分析器、或使用定制分析器

分词器除了写入时转换此条,查询query时也需要用相同的分析器对查询语句进行分析

案例:ElasticSearch kaka

通过分词就转化为 elasticSearch和kaka,这里需要注意的是通过分词转化后把单词的首字母变为小写

Analyzer的组成

Character Fiters :针对原始文本处理,例如去除html

Tokenizer : 按照规则切分单词

Token Filter : 将切分的单词进行加工,转为小写,删除stopwords并增加同义词

ElasticSearch的内置分词器

# Standard Analyzer - 默认分词器,按词切分,小写处理
# 只做单词分割、并且把单词转为小写
get _analyze
{
  "analyzer":"standard",
  "text":"If you don't expect quick success, you'll get a pawn every day"
}

# Simple Analyzer - 按照非字母切分(符号被过滤),小写处理
# 按照非字母切分例如字母与字母之间的——,非字母的都被去除例如下边的 2
get _analyze
{
  "analyzer" :"simple",
  "text":"3 If you don't expect quick success, you'll get a pawn every day kaka-niuniu"
}

# Whitespace Analyzer - 按照空格切分,不转小写
# 仅仅是根据空格切分,再无其它
get _analyze
{
  "analyzer":"whitespace",
  "text":"3 If you don't expect quick success, you'll get a pawn every day"
}

# Stop Analyzer - 小写处理,停用词过滤(the,a, is)
# 按照非字母切分例如字母与字母之间的——,非字母的都被去除例如下边的 2
# 相比Simple Analyze,会把the,a,is等修饰性词语去除
get _analyze
{
  "analyzer":"stop",
  "text":"4 If you don't expect quick success, you'll get a pawn every day"
}

# Keyword Analyzer  - 不分词,直接将输入当作输出
# 不做任何分词,直接把输入的输出,假如你不想使用任何分词时就可以使用这个
get _analyze
{
  "analyzer":"keyword",
  "text":"5 If you don't expect quick success, you'll get a pawn every day"
}

# Patter Analyzer  - 正则表达式,默认\W+(非字符分隔)
# 通过正则表达式进行分词,默认是\W+,非字符的符号进行分割
get _analyze
{
  "analyzer":"pattern",
  "text":"6 If you don't expect quick success, you'll get a pawn every day"
}

# Language 一提供了30多种常见语言的分词器
# 通过不同语言进行分词
# 会把复数转为单数  ,会把单词的ing去除
get _analyze
{
  "analyzer":"english",
  "text":"7 If you don't expect quick success, you'll get a pawn every day kakaing kakas"
}

# 中文分词器
# 这个需要安装  
# 执行: ./bin/elasticsearch-plugin install analysis-icu
# 重启:nohup ./bin/elasticsearch > /dev/null 2>&1 &
get _analyze
{
  "analyzer":"icu_analyzer",
  "text":"你好,我是咔咔"
}

其它中文分词

用的最多的IK分词,只是自定义词库,支持热更新分词字典

清华大学自然语言一套分词器Thulac

六、Search Api

通过Url query 实现搜索

例如:

get /movies/_search?q=2012&df=title&sort=year:desc

q:指定查询语句,使用Query String Syntax

df:查询字段,不指定时,会对所有字段进行查询

sort:排序、from和size用于分页

Profile:可以查看查询是如果被执行的

指定字段查询、泛查询

指定字段查询就是加上df即可、泛查询什么都不加,看案例

通过下图右侧信息可得知,指定字段查询的是title中存在2012的数据

同样也可以这样来写指定字段查询

get /movies/_search?q=2012&df=title
{
  "profile":true
}

通过下图右侧可得知,泛查询则是在所有字段中查找存在2012的数

分组与引号查询

若你查询值为Beautiful Mind 则等效于Beautiful OR Mind ,类似于MySQL中的or语句,意思为查询的字段中包含 Beautiful 或者 Mind 都会被查询出来

若你查询值为"Beautiful Mind" 则等效于Beautiful AND Mind ,类似于MySQL中的and语句,意思为查询的字段中不仅要包含Beautiful 而且还需要包含 Mind ,跟MySQL中不同的是顺序也不能变

注意:这里你乍一眼看过去没啥区别, 其实区别就在于有无引号

# PhraseQuery

# 需要字段title中存在beautiful 和 mind,并且两者的顺序不能乱

# "description" : """title:"beautiful mind""""

get /movies/_search?q=title:"Beautiful Mind"
{
  "profile":"true"
}

# TermQuery

# 需要字段title中出现beautiful 或 mind 都可以

# "type" : "BooleanQuery",
# "description" : "title:beautiful title:mind",

get /movies/_search?q=title:(Beautiful Mind)
{
  "profile":"true"
}

布尔操作

可以使用AND / OR / NOT 或者 && / || / ! 这里你会发现使用的都是大写,+表示must(必须存在),-表示not mast(必须不存在)接下来看案例

# title 里边必须有beautiful 和 mind
# "description" : "+title:beautiful +title:mind"
get /movies/_search?q=title:(Beautiful AND Mind)
{
  "profile":"true"
}

# title里边包含beautiful  必须没有mind
# "description" : "title:beautiful -title:mind"
get /movies/_search?q=title:(Beautiful NOT Mind)
{
  "profile":"true"
}

# title里包含beautiful ,必须也包含mind
# "description" : "title:beautiful +title:mind"
get /movies/_search?q=title:(Beautiful  %2BMind)
{
  "profile":"true"
}

范围查询、通配符查询、模糊匹配

# year年份大于1996的电影
# 注意一下[] 为闭区间   {}为开区间
# "description" : "year:[1997 TO 9223372036854775807]"
get /movies/_search?q=year:>1996
{
  "profile":"true"
}

# title 中存在b的数据
# "description" : "title:b*"
get /movies/_search?q=title:b*
{
  "profile":"true"
}

# 对于模糊匹配还是非常有必要的,因为会存在一起用户会输错单词,我们就可以给做近似度匹配
# "description" : "(title:beautiful)^0.875"
get /movies/_search?q=title:beautifl~1
{
  "profile":"true"
}

七、Request Body Search

在日常开发过程中,最经常用的还是在Request Body中做,接下来跟着咔咔的实例一点点走

正常查询

sort :需要排序的字段

source:查那些字段

from:页数

size:每页数量

post movies/_search
{
  "profile":"true",
  "sort":[{"year":"desc"}],
  "_source":["year"],
  "from":0,
  "size":2,
  "query":{
    "match_all": {}
  }
}

脚本字段

这个应用场景跟咔咔近期做的外币功能是非吻合,每笔合同都有自己不同的汇率,要算出这笔合同金额是多少

post /movies/_search
{
  "script_fields":{
    "new_field":{
      "script":{
        "lang":"painless",
        "source":"doc['year'].value+'年'"
      }
    }
  },
  "query":{
    "match_all": {}
  }
}

这个案例就是把当前数据的year 拼上 “年” 组成的新字段然后返回,返回结果如下

    {
        "_index" : "movies",
        "_type" : "_doc",
        "_id" : "3844",
        "_score" : 1.0,
        "fields" : {
          "new_field" : [
            "1989年"
          ]
        }
      } 

从上面的结果可以看到只返回了脚本字段,没有返回原始字段,那如何让原始字段也跟着一起返回呢?

只需要在request body中加上_source即可,当然也可以查询指定字段"_source":["id","title"]

post /movies/_search
{
  "_source":"*",
  "script_fields":{
    "new_field":{
      "script":{
        "lang":"painless",
        "source":"doc['year'].value+'年'"
      }
    }
  },
  "query":{
    "match_all": {}
  }
}

查看返回结果

    {
        "_index" : "movies",
        "_type" : "_doc",
        "_id" : "3843",
        "_score" : 1.0,
        "_source" : {
          "year" : 1983,
          "@version" : "1",
          "genre" : [
            "Horror"
          ],
          "id" : "3843",
          "title" : "Sleepaway Camp"
        },
        "fields" : {
          "new_field" : [
            "1983年"
          ]
        }
      }

查询表达式Match

# title中包含sleepaway 或者 camp 即可
# 可以看到跟 url 的get /movies/_search?q=title:(Beautiful Mind) 分组查询返回结果是一致的
# "description" : "title:sleepaway title:camp"
get /movies/_doc/_search
{
  "query":{
    "match":{
      "title":"Sleepaway Camp"
    }
  },
  "profile":"true"
}

# title中必须包含sleepaway 和 camp  并且顺序不能乱
# 可以看到跟 url 的get /movies/_search?q=title:(Beautiful AND Mind)是一致的
# "description" : "+title:sleepaway +title:camp"
get /movies/_doc/_search
{
  "query":{
    "match":{
      "title":{
        "query":"Sleepaway Camp",
        "operator":"AND"
      }
    }
  },
  "profile":"true"
}

# title 中查询Sleepaway 和 Camp中间可以有一个任意值插入
# get /movies/_search?q=title:beautifl~1
# "description" : """title:"sleepaway camp"~1"""
get /movies/_doc/_search
{
  "query":{
    "match_phrase":{
      "title":{
        "query":"Sleepaway Camp",
        "slop":1
      }
    }
  },
  "profile":"true"
}

八、 Query String 和 Simple Query String

# Query String 中可以使用and跟url 的query string一样
# title 中必须存在sleepaway 和 camp 即可
# 跟url的 get /movies/_search?q=title:(Beautiful Mind) 一致
# "description" : "+title:sleepaway +title:camp"
post /movies/_search
{
  "query":{
    "query_string":{
      "default_field":"title",
      "query":"Sleepaway AND Camp"
    }
  },
  "profile":"true"
}

# simple_query_string 不支持and的使用,可以看到是把and当做一个词来进行查询
# title 中存在sleepaway 或 camp 即可
# "description" : "title:sleepaway title:and title:camp"
post /movies/_search
{
  "query":{
    "simple_query_string": {
      "query": "Sleepaway AND Camp",
      "fields": ["title"]
    }
  },
  "profile":"true"
}

# 如果想让simple_query_string 执行布尔操作,则需要给加上default_operator
# title中必须存在sleepaway 和 camp 即可
# "description" : "+title:sleepaway +title:camp"
post /movies/_search
{
  "query":{
    "simple_query_string": {
      "query": "Sleepaway Camp",
      "fields": ["title"],
      "default_operator": "AND"
    }
  },
  "profile":"true"
}

九、Mapping和常见字段类型

什么是Mapping

Mapping类似于数据库中的schema,主要包括定义索引的字段名称,定义字段的数据类型,配置倒排索引设置

什么是Dynamic Mapping

Mapping有一个属性为dynamic,其定义了如何处理新增文档中包含的新增字段,其有三个值可选默认为true

true:一旦有新增字段的文档写入,Mapping也同时被更新

false:Mapping不会被更新并且新增的字段也不会被索引,但是信息会出现在_source中

strict:文档写入失败

常见类型

Json类型 ElasticSearch类型
字符串 日期格式为data、浮点数为float、整数为long、设置为text并且增加keyword子字段
布尔值 boolean
浮点数 float
整数 long
对象 object
数组 取第一个非空数值的类型所定
控制 忽略
put kaka/_doc/1
{
  "text":"kaka",
  "int":10,
  "boole_text":"false",
  "boole":true,
  "float_text":"1.234",
  "float":1.234,
  "loginData":"2005-11-24T22:20"
}

# 获取索引kaka的mapping
get kaka/_mapping

返回结果,从结果中可得知如果是false或者true在引号里边就是text类型需要注意这一点就行

{
  "kaka" : {
    "mappings" : {
      "properties" : {
        "boole" : {
          "type" : "boolean"
        },
        "boole_text" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "float" : {
          "type" : "float"
        },
        "float_text" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "int" : {
          "type" : "long"
        },
        "loginData" : {
          "type" : "date"
        },
        "text" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        }
      }
    }
  }
}

自定义Mapping

设置字段不被索引

设置字段不被索引使用index,只需要给字段在加一个index:false即可,同时注意一下mapping的设置格式

按照咔咔给的步骤走,你会得到一个这样的错误Cannot search on field [mobile] since it is not indexed,意思就是不能搜索没有索引的字段

put kaka
{
  "mappings":{
    "properties":{
      "firstName":{
        "type":"text"
      },
      "lastName":{
        "type":"text"
      },
      "mobile":{
        "type":"text",
        "index":false
      }
    }
  }
}

post /kaka/_doc/1
{
  "firstName":"kaka",
  "lastName":"Niu",
  "mobile":"123456"
}

get /kaka/_search
{
  "query":{
    "match": {
      "mobile":"123456"
    }
  }
}

设置copy_to

设置方式如下,copy_to设置后再搜索时可以直接使用你定义的字段进行搜索

put kaka
{
  "mappings":{
    "properties":{
      "firstName":{
        "type":"text",
        "copy_to":"allSearch"
      },
      "lastName":{
        "type":"text",
        "copy_to":"allSearch"
      }
    }
  }
}

为了方便查看,这里咔咔再插入两条数据

post /kaka/_doc/1
{
  "fitstName":"kaka",
  "lastName":"niuniu"
}

post /kaka/_doc/2
{
  "fitstName":"kaka",
  "lastName":"kaka niuniu"
}

进行查询,返回的只有id为2的这条数据,所以说使用copy_to后,代表着所有字段中都包含搜索的词

post /kaka/_search
{
  "query":{
    "match":{
      "allSearch":"kaka"
    }
  },
  "profile":"true"
}

十、自定义分词器

分词器是由Character Fiters、Tokenizer、Token Filter组成的

Character Filters 主要是对文本的替换、增加、删除,可以配置多个Character Filters ,需要注意的是设置后会影响Tokenizer的position、offset信息

Character Filters 自带的有 HTMl strip 去除html标签、Mapping 字符串的替换、Pattern replace 正则匹配替换

Tokenizer 处理的就是分词,内置了非常多的分词详细可以在第二期文章中查看

Token Filters 是将Tokenizer 分词后的单词进行增加、修改、删除,例如进行转为lowercase小写字母、stop去除修饰词、synonym近义词等

自定义Character Filters

# Character Fiters之html的替换
# 会把text中的html标签都会去除掉
post /_analyze
{
  "tokenizer":"keyword",
  "char_filter":["html_strip"],
  "text":"<span>咔咔闲谈</span>"
}

# Character Fiters之替换值
# 会把text中的 i 替换为 kaka、hope 替换为 wish
post /_analyze
{
  "tokenizer":"keyword",
  "char_filter":[
    {
      "type":"mapping",
      "mappings":["i => kaka","hope => wish"]
    }
    ],
  "text":"I hope,if you don't expect quick success, you'll get a pawn every day."
}

# Character Fiters之正则表达式
# 使用正则表达式来获取域名信息
post /_analyze
{
  "tokenizer":"keyword",
  "char_filter":[
    {
      "type":"pattern_replace",
      "pattern":"http://(.*)",
      "replacement":"$1"
    }
    ],
    "text":"http://www.kakaxiantan.com"
}

自定义Token Filters

现在用的分词器是whitespace,这个分词器是把词使用空格 隔开,但是现在还想让词变小写并过滤修饰词,应该怎么做呢?

post /_analyze
{
  "tokenizer":"whitespace",
  "filter":["stop","lowercase"],
  "text":"If on you don't expect quick success, you'll get a pawn every day"
}

为了不占地方,只复制出了代表性的返回结果

{
  "tokens" : [
    {
      "token" : "if",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "you",
      "start_offset" : 6,
      "end_offset" : 9,
      "type" : "word",
      "position" : 2
    }
  ]
}

实战自定义分词

本节开篇就知道analyze是通过Character Fiters、Tokenizer、Token Filter组成的,那么在自定义时这三个都是可以自定义的

自定义分词必存在analyzer、tokenizer、char_filter、filter

这部分的定义都是需要在下面定义好规则,否则无法使用,详细定义代码往下拉看完整版本即可

对这个配置不要死记硬背使用的多了自然就会记住

# 实战自定义analyze
put kaka
{
  "settings":{
    "analysis":{
      "analyzer":{
        "my_custom_analyzer":{
          "type":"custom",
          "char_filter":[
            "emoticons"
          ],
          "tokenizer":"punctuation",
          "filter":[
            "lowercase",
            "englist_stop"
          ]
        }
      },
      "tokenizer":{
        "punctuation":{
          "type":"keyword"
        }
      },
      "char_filter":{
        "emoticons":{
          "type":"mapping",
          "mappings":[
            "123 => Kaka",
            "456 => xian tan"
          ]
        }
      },
      "filter":{
        "englist_stop":{
          "type":"stop",
          "stopwords":"_english_"
        }
      }
    }
  }
}

# 执行自定义的分词
post /kaka/_analyze
{
  "analyzer":"my_custom_analyzer",
  "text":" 123 456"
}

# 返回结果,把字母大写转为小写不做分词
{
  "tokens" : [
    {
      "token" : " kaka xian tan",
      "start_offset" : 0,
      "end_offset" : 8,
      "type" : "word",
      "position" : 0
    }
  ]
}

十一、Index Template

在一个新索引新建并插入文档后,会使用默认的setting、mapping,如果你有设定settings、mappings会覆盖默认的settings、mappings配置

# 创建索引并插入文档
post /kaka/_doc/1
{
  "gongzhonghao":"123"
}

# 获取settings、mappings
get /kaka

以下这个配置,就是默认配置

# 返回的settings、mappings
{
  "kaka" : {
    "aliases" : { },
    "mappings" : {
      "properties" : {
        "gongzhonghao" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        }
      }
    },
    "settings" : {
      "index" : {
        "creation_date" : "1642080577305",
        "number_of_shards" : "1",
        "number_of_replicas" : "1",
        "uuid" : "JJWsGYcrTam0foEQxuZqGQ",
        "version" : {
          "created" : "7010099"
        },
        "provided_name" : "kaka"
      }
    }
  }
}

接下来创建一个自己的模板

# 设置一个只要是test开头的索引都能使用的模板,在这个模板中我们将字符串中得数字也转为了long类型,而非text
put /_template/kaka_tmp
{
  "index_patterns":["test*"],
  "order":1,
  "settings":{
    "number_of_shards":1,
    "number_of_replicas":2
  },
  "mappings":{
   # 让时间不解析为date类型,返回是text类型
    "date_detection":false,
    # 让双引号下的数字解析为long类型,而非text类型
    "numeric_detection":true
  }
}

创建索引

post /test_kaka/_doc/1
{
  "name":"123",
  "date":"2022/01/13"
}

get /test_kaka

返回结果

{
  "test_kaka" : {
    "aliases" : { },
    "mappings" : {
      "date_detection" : false,
      "numeric_detection" : true,
      "properties" : {
        "date" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "name" : {
          "type" : "long"
        }
      }
    },
    "settings" : {
      "index" : {
        "creation_date" : "1642081053006",
        "number_of_shards" : "1",
        "number_of_replicas" : "2",
        "uuid" : "iCcaa_8-TXuymhfzQi31yA",
        "version" : {
          "created" : "7010099"
        },
        "provided_name" : "test_kaka"
      }
    }
  }
}

坚持学习、坚持写作、坚持分享是咔咔从业以来所秉持的信念。愿文章在偌大的互联网上能给你带来一点帮助,我是咔咔,下期见。

初学者都能学会的ElasticSearch入门实战的更多相关文章

  1. 转 猫都能学会的Unity3D Shader入门指南(二)

    猫都能学会的Unity3D Shader入门指南(二) 关于本系列 这是Unity3D Shader入门指南系列的第二篇,本系列面向的对象是新接触Shader开发的Unity3D使用者,因为我本身自己 ...

  2. Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...

  3. ElasticSearch 入门总结

    ElasticSearch 入门 本篇为 ElasticSearch 入门学习总结笔记,课程视频地址:ElasticSearch 入门 一.ElasticSearch 简介 1.1.什么是Elasti ...

  4. 你一定喜欢看的 Webpack 2.× 入门实战(转载)

    最近在学习 Webpack,网上大多数入门教程都是基于 Webpack 1.x 版本的,我学习 Webpack 的时候是看了 zhangwang 的 <<入门 Webpack,看这篇就够了 ...

  5. 你一定喜欢看的 Webpack 2.× 入门实战

    from:https://www.jianshu.com/p/b83a251d53db?utm_campaign=maleskine&utm_content=note&utm_medi ...

  6. 干货 |《从Lucene到Elasticsearch全文检索实战》拆解实践

    1.题记 2018年3月初,萌生了一个想法:对Elasticsearch相关的技术书籍做拆解阅读,该想法源自非计算机领域红火已久的[樊登读书会].得到的每天听本书.XX拆书帮等. 目前市面上Elast ...

  7. Elasticsearch入门,看这一篇就够了

    目录 前言 可视化工具 kibana kibana 的安装 kibana 配置 kibana 的启动 Elasticsearch 入门操作 操作 index 创建 index 索引别名有什么用 删除索 ...

  8. Spark入门实战系列--10.分布式内存文件系统Tachyon介绍及安装部署

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Tachyon介绍 1.1 Tachyon简介 随着实时计算的需求日益增多,分布式内存计算 ...

  9. Spark入门实战系列--1.Spark及其生态圈简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache ...

随机推荐

  1. 如何写出优雅又地道的Python代码?【转载】

    在Python社区文化的浇灌下,演化出了一种独特的代码风格,去指导如何正确地使用Python,这就是常说的pythonic.一般说地道(idiomatic)的python代码,就是指这份代码很pyth ...

  2. Linux目录结构详细

    今日内容 解析映射文件 在 window 和 Linux 系统中都有解析文件,一般名为 host,存放在配置目录 etc 中 在本地机访问网络输入域名时,首先会解析 host 文件,如果域名有对应的i ...

  3. 快来用这款BI分析工具,摆脱数据分析的困扰

    ​互联网.物联网时代,数据激增是正常现象,但这给公司信息部门和数据分析师带来了巨大的工作量.根据以前的分析方法,有必要详细而深入地完成分析报告,即使借助数据分析工具,也要花费大量的时间和人力,更不用说 ...

  4. Dashboard究竟是什么,它在数据展示上的优势何在?

    ​相信很多人在做数据分析工作的时候都遇到这种情况,辛辛苦苦做出来的数据报表老板看了嫌弃不够直观.生动,客户看了嫌弃不够高大上.这个时候不妨尝试一下使用Dashboard来展示报表数据,可能有些人对Da ...

  5. 【C# 线程】内存模型(C#)---非常重要 【多线程、并发、异步的基础知识】

    内存模型概述 MSDN:理论与实践中的 C# 内存模型 MSDN:理论与实践中的 C# 内存模型,第 2 部分 内存模型就是内存一致性模型. 以下内如来自维基百科 内存一致性模型列表 线性一致性(Li ...

  6. [iptables] 基于iptables实现的跨网络通信

    描述 在很多业务场景下,会遇上很多诡异的需求,不仅限于文章提及的需求,还有各种五花八门的需求,大部份的这些需求的产生都是来源于以前设计.规划上导致的问题.所以我们都会想尽办法为客户解决问题,维护好客户 ...

  7. JAVA只要掌握内部类,多继承和单继承都不是问题

    摘要:如果实现java的多继承,其实很简单,关键是对于内部类的特征的掌握,内部类可以继承一个与外部类无关的类,保证了内部类天然独立性,根据这个特性从而实现一个类可以继承多个类的效果. 本文分享自华为云 ...

  8. Oracle之查询排序

    SQL排序查询 DESC降序.ASC升序(默认是升序) /* 语法结构: SELECT * | 列名1[,列名2...] | 表达式 FROM 表名 [WHERE 限定条件] ORDER BY 列名1 ...

  9. 使用lrzsz在windows、Linux之间互传文件

    使用xshell自带的传输太慢 使用lrzsz进行文件互传: xshell远程linux 安装工具:yum install -y lrzsz,检查是否安装成功:rpm -qa |grep lrzsz ...

  10. 教程10--hexo搭建

    1.安装node.js 下载系统对应的node安装包一直下一步完成 2.安装git 参照git安装https://www.cnblogs.com/daxiang2008/p/10687616.html ...