头文件:

#pragma once

#include<stdlib.h>

//链表结点
struct LinkNode{
void *data;
struct LinkNode *next;
}; //链表
struct _Linklist{
struct LinkNode header;
int size; //链表结点的数目
}; typedef void *LinkList; #ifdef __cplusplus
extern "C" {
#endif //初始化链表
LinkList Init_LinkList();
//指定位置插入
int InsertByPos_LinkList(LinkList list, int pos, void *data);
//头插
int PushFront_LinkList(LinkList list, void *data);
//尾插
int PushBack_LinkList(LinkList list, void *data);
//在指定值的前面插入
int InsertByVal_LinkList(LinkList list, void *oldval, void *newval, int(*isequal)(void*,void*));
//指定位置删除
int RemoveByPos_LinkList(LinkList list, int pos);
//根据值删除
int RemoveByVal_LinkList(LinkList list, void *data, int(*compare)(void *, void *));
//头删
void PopFront_LinkList(LinkList list);
//尾删
void PopBack_LinkList(LinkList list);
//遍历
void Foreach_LinkList(LinkList list, void(*foreach)(void *));
//销毁
void Destroy_LinkList(LinkList list); #ifdef __cplusplus
}
#endif

头文件实现:

#include"LinkList.h"

//初始化链表
LinkList Init_LinkList(){ struct _Linklist *list = malloc(sizeof(struct _Linklist));
if (NULL == list){
return NULL;
} list->header.data = NULL;
list->header.next = NULL;
list->size = 0; return list;
}
//指定位置插入 0代表插入到第一个位置
int InsertByPos_LinkList(LinkList list, int pos, void *data){ if (NULL == list){
return -1;
} if (NULL == data){
return -2;
} struct _Linklist *llist = (struct _Linklist *)list; if (pos < 0 || pos > llist->size){
pos = llist->size;
} //辅助指针变量
struct LinkNode *pCurrent = &(llist->header);
for (int i = 0; i < pos;i ++){
pCurrent = pCurrent->next;
} //创建新结点
struct LinkNode *newnode = malloc(sizeof(struct LinkNode));
newnode->data = data;
newnode->next = NULL; //新结点入链表
newnode->next = pCurrent->next;
pCurrent->next = newnode; //size
llist->size++; return 0;
}
//头插
int PushFront_LinkList(LinkList list, void *data){
return InsertByPos_LinkList(list, 0, data);
}
//尾插
int PushBack_LinkList(LinkList list, void *data){
if (NULL == list){
return -1;
}
struct _Linklist *llist = (struct _Linklist *)list;
return InsertByPos_LinkList(list,llist->size - 1,data);
}
//在指定值的前面插入
int InsertByVal_LinkList(LinkList list, void *oldval, void *newval, int(*isequal)(void*, void*)){
if(NULL ==list){
return -1;
} if (NULL == oldval){
return -2;
} if (NULL == newval){
return -3;
} if (NULL == isequal){
return -4;
} struct _Linklist *llist = (struct _Linklist *)list; //辅助指针变量
struct LinkNode *pPrev = &(llist->header);
struct LinkNode *pCurrent = pPrev->next;
while (pCurrent != NULL){ if (isequal(pCurrent->data, oldval)){ //创建新结点
struct LinkNode *newnode = malloc(sizeof(struct LinkNode));
newnode->data = newval;
newnode->next = NULL; //新结点入链表
pPrev->next = newnode;
newnode->next = pCurrent; llist->size++; break;
} pPrev = pCurrent;
pCurrent = pCurrent->next;
} return 0;
}
//指定位置删除
int RemoveByPos_LinkList(LinkList list, int pos){ if (NULL == list){
return -1;
} struct _Linklist *llist = (struct _Linklist *)list; if (llist->size == 0){
return 0;
} if (pos < 0 || pos > llist->size - 1){
return 0;
} //辅助指针变量
//找到待删除结点的前一个结点
struct LinkNode *pCurrent = &(llist->header);
for (int i = 0; i < pos;i ++){
pCurrent = pCurrent->next;
} //缓存下待删除结点
struct LinkNode *pDel = pCurrent->next;
//重新建立待删除结点的前驱后继结点关系
pCurrent->next = pDel->next;
//删除结点内存
free(pDel);
pDel = NULL; llist->size--; return 0;
}
//根据值删除
int RemoveByVal_LinkList(LinkList list, void *data, int(*compare)(void *, void *)){ if (NULL == list){
return -1;
} if (NULL == data){
return -2;
} if (NULL == compare){
return -3;
} struct _Linklist *llist = (struct _Linklist *)list;
//辅助指针变量
struct LinkNode *pPrev = &(llist->header);
struct LinkNode *pCurrent = pPrev->next; while (pCurrent != NULL){ if (compare(pCurrent->data, data)){ pPrev->next = pCurrent->next;
free(pCurrent);
llist->size--;
break;
} pPrev = pCurrent;
pCurrent = pPrev->next; } return 0;
}
//头删
void PopFront_LinkList(LinkList list){
RemoveByPos_LinkList(list, 0);
}
//尾删
void PopBack_LinkList(LinkList list){
if (NULL == list){
return;
}
struct _Linklist *llist = (struct _Linklist *)list;
RemoveByPos_LinkList(list, llist->size - 1);
}
//遍历
void Foreach_LinkList(LinkList list, void(*foreach)(void *)){ if (NULL == list){
return;
} if (NULL == foreach){
return;
} struct _Linklist *llist = (struct _Linklist *)list; //辅助指针变量
struct LinkNode *pCurrent = llist->header.next;
while (pCurrent != NULL){
foreach(pCurrent->data);
pCurrent = pCurrent->next;
} }
//销毁
void Destroy_LinkList(LinkList list){ if (NULL == list){
return;
} struct _Linklist *llist = (struct _Linklist *)list; //辅助指针变量
struct LinkNode *pCurrent = llist->header.next;
while (pCurrent != NULL){ //缓存下一个结点
struct LinkNode *pNext = pCurrent->next;
//释放当前结点内存
free(pCurrent);
//指针移动到下一个结点的位置
pCurrent = pNext; } free(llist);
llist = NULL;
}

测试代码:

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include"LinkList.h" struct Person{
char name[64];
int age;
}; void MyPrint(void *data){
struct Person *person = (struct Person *)data;
printf("Name:%s Age:%d\n", person->name,person->age);
} int MyCompare(void *d1,void *d2){
struct Person *p1 = (struct Person *)d1;
struct Person *p2 = (struct Person *)d2;
return strcmp(p1->name, p2->name) == 0 && p1->age == p2->age;
} void test(){ //创建测试数据
struct Person p1 = { "aaa", 10 };
struct Person p2 = { "bbb", 20 };
struct Person p3 = { "ccc", 30 };
struct Person p4 = { "ddd", 40 };
struct Person p5 = { "eee", 50 };
struct Person p6 = { "fff", 60 };
struct Person p7 = { "ggg", 70 }; //初始化链表
LinkList list = Init_LinkList();
//将数据插入链表
InsertByPos_LinkList(list, 0, &p1);
InsertByPos_LinkList(list, 0, &p2);
InsertByPos_LinkList(list, 0, &p3);
InsertByPos_LinkList(list, 1, &p4);
InsertByPos_LinkList(list, 0, &p5);
InsertByPos_LinkList(list, 0, &p6);
//遍历 6 5 3 4 2 1
Foreach_LinkList(list, MyPrint);
printf("-------------------\n");
printf("在name为ccc,age为30的数据前面插入:\n");
InsertByVal_LinkList(list, &p3, &p7, MyCompare);
Foreach_LinkList(list, MyPrint);
printf("删除位置4的数据:\n");
RemoveByPos_LinkList(list,4);
Foreach_LinkList(list, MyPrint);
printf("删除name为ggg age为70的数据:\n");
RemoveByVal_LinkList(list, &p7, MyCompare);
Foreach_LinkList(list, MyPrint); //销毁链表
Destroy_LinkList(list);
} int main(){ test(); system("pause");
return EXIT_SUCCESS;
}

链表版本二:通过修改指针的指向的区域的大小,实现数据链接,给用户使用

头文件:

#pragma once

#include<stdlib.h>

//链表小节点

//目的 : 第一,让用户数据包含 第二,我需要把用户指针类型转换成struct LinkNode*类型
struct LinkNode{
struct LinkNode *next;
}; //链表结构体
struct LList{
struct LinkNode header;
int size;
}; typedef void *LinkList; //初始化
LinkList Init_LinkList(); //指定位置插入
void Insert_LinkList(LinkList list, int pos, struct LinkNode *data);
//位置删除
void RemoveByPos_LinkList(LinkList list, int pos);
//遍历
void Foreach_LinkList(LinkList list, void(*foreach)(void *)); //销毁
void Destroy_LinkList(LinkList list);

头文件实现:

#include"LinkList.h"

//初始化
LinkList Init_LinkList(){ struct LList *list = malloc(sizeof(struct LList));
if (NULL == list){
return NULL;
}
list->header.next = NULL;
list->size = 0; return list;
}
//指定位置插入
void Insert_LinkList(LinkList list, int pos, struct LinkNode *data){ if (NULL == list){
return;
} if (NULL == data){
return;
} struct LList *llist = (struct LList *)list; if (pos < 0 || pos >llist->size){
pos = llist->size;
} //查找pos位置前一个位置的节点
struct LinkNode *pCurrent = &(llist->header);
for (int i = 0; i < pos;i ++){
pCurrent = pCurrent->next;
} //将新节点插入到链表
data->next = pCurrent->next;
pCurrent->next = data; llist->size++;
} //位置删除
void RemoveByPos_LinkList(LinkList list, int pos){ if (NULL ==list){
return;
} struct LList *llist = (struct LList *)list; if (llist->size == 0){
return;
} if (pos < 0 || pos > llist->size - 1){
return;
} //找到pos位置的前一个节点
struct LinkNode *pCurrent = &(llist->header);
for (int i = 0; i < pos; i ++){
pCurrent = pCurrent->next;
} //缓存下待删除节点
struct LinkNode *pDel = pCurrent->next;
//重新建立待删除的节点前驱后继节点关系
pCurrent->next = pDel->next; llist->size--;
} //遍历
void Foreach_LinkList(LinkList list, void(*foreach)(void *)){
if (NULL == list){
return;
} struct LList *llist = (struct LList *)list;
//辅助指针变量
struct LinkNode *pCurrent = llist->header.next;
while (pCurrent != NULL){
foreach(pCurrent);
pCurrent = pCurrent->next;
}
}

测试函数:

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include"LinkList.h" struct Person{
struct LinkNode node;
char name[64];
int age;
}; void MyPrint(void *data){
struct Person *person = (struct Person *)data;
printf("Name:%s Age:%d\n",person->name,person->age);
} void ChanageValue(void *data){
struct Person *person = (struct Person *)data;
person->age += 100;
} //#define ISSTACK void test(){ //创建测试数据
#ifdef ISSTACK
struct Person p1 = { NULL , "aaa", 10 };
struct Person p2 = { NULL , "bbb", 20 };
struct Person p3 = { NULL , "ccc", 30 };
struct Person p4 = { NULL , "ddd", 40 };
struct Person p5 = { NULL , "eee", 50 };
#else
struct Person *p1 = malloc(sizeof(struct Person));
struct Person *p2 = malloc(sizeof(struct Person));
struct Person *p3 = malloc(sizeof(struct Person));
struct Person *p4 = malloc(sizeof(struct Person));
struct Person *p5 = malloc(sizeof(struct Person)); strcpy(p1->name, "aaa");
strcpy(p2->name, "bbb");
strcpy(p3->name, "ccc");
strcpy(p4->name, "ddd");
strcpy(p5->name, "eee"); p1->age = 10;
p2->age = 20;
p3->age = 30;
p4->age = 40;
p5->age = 50; #endif //初始化链表
LinkList list = Init_LinkList();
#ifdef ISSTACK
//数据插入到链表
Insert_LinkList(list, 0, (struct LinkNode *)&p1);
Insert_LinkList(list, 0, (struct LinkNode *)&p2);
Insert_LinkList(list, 0, (struct LinkNode *)&p3);
Insert_LinkList(list, 0, (struct LinkNode *)&p4);
Insert_LinkList(list, 0, (struct LinkNode *)&p5);
#else
Insert_LinkList(list, 0, (struct LinkNode *)p1);
Insert_LinkList(list, 0, (struct LinkNode *)p2);
Insert_LinkList(list, 0, (struct LinkNode *)p3);
Insert_LinkList(list, 0, (struct LinkNode *)p4);
Insert_LinkList(list, 0, (struct LinkNode *)p5);
#endif
//遍历
Foreach_LinkList(list, MyPrint); //删除2号位置
printf("------------------\n");
RemoveByPos_LinkList(list, 3);
Foreach_LinkList(list, MyPrint); //遍历修改数据
printf("---------------------\n");
//Foreach_LinkList(list, ChanageValue);
//Foreach_LinkList(list, MyPrint); //销毁链表
Destroy_LinkList(list); free(p1);
free(p2);
free(p3);
free(p4);
free(p5); } int main(){ test(); system("pause");
return EXIT_SUCCESS;
}

以链表为底层容器实现栈

头文件:

容器头文件:

#pragma once

#include<stdlib.h>

//链表小节点

//目的 : 第一,让用户数据包含 第二,我需要把用户指针类型转换成struct LinkNode*类型
struct LinkNode{
struct LinkNode *next;
};

//链表结构体
struct LList{
struct LinkNode header;
int size;
};

typedef void *LinkList;

//初始化
LinkList Init_LinkList();

//指定位置插入
void Insert_LinkList(LinkList list, int pos, struct LinkNode *data);
//位置删除
void RemoveByPos_LinkList(LinkList list, int pos);
//遍历
void Foreach_LinkList(LinkList list, void(*foreach)(void *));
//根据位置获得值
void *Get_LinkList(LinkList list,int pos);
int Size_LinkList(LinkList list);

//销毁
void Destroy_LinkList(LinkList list);

栈头文件:

#pragma once

#include"LinkList.h"

struct StackNode{
struct LinkNode node;
}; typedef void *LinkStack; //初始化
LinkStack Init_LinkStack();
//入栈
void Push_LinkStack(LinkStack stack, void *data);
//出栈
void Pop_LinkStack(LinkStack stack);
//获得栈顶元素
void *Top_LinkStack(LinkStack stack);
//大小
int Size_LinkStack(LinkStack stack);
//销毁栈
void Destroy_LinkStack(LinkStack stack);

头文件实现:

容器头文件实现:

#include"LinkList.h"

//初始化
LinkList Init_LinkList(){ struct LList *list = malloc(sizeof(struct LList));
if (NULL == list){
return NULL;
}
list->header.next = NULL;
list->size = 0; return list;
}
//指定位置插入
void Insert_LinkList(LinkList list, int pos, struct LinkNode *data){ if (NULL == list){
return;
} if (NULL == data){
return;
} struct LList *llist = (struct LList *)list; if (pos < 0 || pos >llist->size){
pos = llist->size;
} //查找pos位置前一个位置的节点
struct LinkNode *pCurrent = &(llist->header);
for (int i = 0; i < pos;i ++){
pCurrent = pCurrent->next;
} //将新节点插入到链表
data->next = pCurrent->next;
pCurrent->next = data; llist->size++;
} //位置删除
void RemoveByPos_LinkList(LinkList list, int pos){ if (NULL ==list){
return;
} struct LList *llist = (struct LList *)list; if (llist->size == 0){
return;
} if (pos < 0 || pos > llist->size - 1){
return;
} //找到pos位置的前一个节点
struct LinkNode *pCurrent = &(llist->header);
for (int i = 0; i < pos; i ++){
pCurrent = pCurrent->next;
} //缓存下待删除节点
struct LinkNode *pDel = pCurrent->next;
//重新建立待删除的节点前驱后继节点关系
pCurrent->next = pDel->next; llist->size--;
} //根据位置获得值
void *Get_LinkList(LinkList list, int pos){
if (NULL == list){
return NULL;
} struct LList *llist = (struct LList *)list;
if (pos < 0 || pos > llist->size - 1){
return NULL;
} //辅助指针变量
struct LinkNode *pCurrent = &(llist->header);
for (int i = 0; i < pos; i++){
pCurrent = pCurrent->next;
} return pCurrent->next;
} int Size_LinkList(LinkList list){
if (NULL == list){
return -1;
} struct LList *llist = (struct LList *)list;
return llist->size;
} //遍历
void Foreach_LinkList(LinkList list, void(*foreach)(void *)){
if (NULL == list){
return;
} struct LList *llist = (struct LList *)list;
//辅助指针变量
struct LinkNode *pCurrent = llist->header.next;
while (pCurrent != NULL){
foreach(pCurrent);
pCurrent = pCurrent->next;
}
} //销毁
void Destroy_LinkList(LinkList list){
if (NULL == list){
return;
} free(list);
list = NULL;
}

栈头文件实现:

#include"LinkStack.h"

//初始化
LinkStack Init_LinkStack(){
return Init_LinkList();
}
//入栈
void Push_LinkStack(LinkStack stack, void *data){
Insert_LinkList(stack, 0, data);
}
//出栈
void Pop_LinkStack(LinkStack stack){
RemoveByPos_LinkList(stack, 0);
}
//获得栈顶元素
void *Top_LinkStack(LinkStack stack){
return Get_LinkList(stack, 0);
}
//大小
int Size_LinkStack(LinkStack stack){
return Size_LinkList(stack);
}
//销毁栈
void Destroy_LinkStack(LinkStack stack){
Destroy_LinkList(stack);
}

测试文件

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include"LinkStack.h" struct Person{
struct StackNode node;
char name[64];
int age;
}; void test(){ //创建测试数据
struct Person p1 = { NULL, "aaa", 10 };
struct Person p2 = { NULL, "bbb", 20 };
struct Person p3 = { NULL, "ccc", 30 };
struct Person p4 = { NULL, "ddd", 40 };
struct Person p5 = { NULL, "eee", 50 };
//初始化栈
LinkStack stack = Init_LinkStack();
//数据入栈
Push_LinkStack(stack , &p1);
Push_LinkStack(stack, &p2);
Push_LinkStack(stack, &p3);
Push_LinkStack(stack, &p4);
Push_LinkStack(stack, &p5);
//输出栈中元素
while (Size_LinkStack(stack) > 0){ //获得栈顶元素
struct Person *person = (struct Person*)Top_LinkStack(stack);
//输出元素
printf("Name:%s Age:%d\n",person->name,person->age);
//弹出栈顶元素
Pop_LinkStack(stack); } printf("Size%d\n",Size_LinkStack(stack)); //销毁栈
Destroy_LinkStack(stack);
} int main(){ test(); system("pause");
return EXIT_SUCCESS;
}

数据结构 传统链表实现与Linux内核链表的更多相关文章

  1. 链表的艺术——Linux内核链表分析

    引言: 链表是数据结构中的重要成员之中的一个.因为其结构简单且动态插入.删除节点用时少的长处,链表在开发中的应用场景许多.仅次于数组(越简单应用越广). 可是.正如其长处一样,链表的缺点也是显而易见的 ...

  2. 数据结构开发(10):Linux内核链表

    0.目录 1.老生常谈的两个宏(Linux) 1.1 offsetof 1.2 container_of 2.Linux内核链表剖析 3.小结 1.老生常谈的两个宏(Linux) Linux 内核中常 ...

  3. [国嵌攻略][108][Linux内核链表]

    链表简介 链表是一种常见的数据结构,它通过指针将一系列数据节点连接成一条数据链.相对于数组,链表具有更好的动态性,建立链表时无需预先知道数据总量,可以随机分配空间,可以高效地在链表中的任意位置实时插入 ...

  4. linux内核链表分析

    一.常用的链表和内核链表的区别 1.1  常规链表结构        通常链表数据结构至少应包含两个域:数据域和指针域,数据域用于存储数据,指针域用于建立与下一个节点的联系.按照指针域的组织以及各个节 ...

  5. Linux 内核 链表 的简单模拟(1)

    第零章:扯扯淡 出一个有意思的题目:用一个宏定义FIND求一个结构体struct里某个变量相对struc的编移量,如 struct student { int a; //FIND(struct stu ...

  6. Linux内核链表深度分析【转】

    本文转载自:http://blog.csdn.net/coding__madman/article/details/51325646 链表简介: 链表是一种常用的数据结构,它通过指针将一系列数据节点连 ...

  7. linux内核链表的使用

    linux内核链表:链表通常包括两个域:数据域和指针域.struct list_head{struct list_head *next,*prev;};include/linux/list.h中实现了 ...

  8. 深入分析 Linux 内核链表--转

    引用地址:http://www.ibm.com/developerworks/cn/linux/kernel/l-chain/index.html 一. 链表数据结构简介 链表是一种常用的组织有序数据 ...

  9. 深入分析 Linux 内核链表

    转载:http://www.ibm.com/developerworks/cn/linux/kernel/l-chain/   一. 链表数据结构简介 链表是一种常用的组织有序数据的数据结构,它通过指 ...

  10. linux内核链表的移植与使用

    一.  Linux内核链表为双向循环链表,和数据结构中所学链表类似,具体不再细讲.由于在内核中所实现的函数十分经典,所以移植出来方便后期应用程序中的使用. /********************* ...

随机推荐

  1. POJ2686 Traveling by Stagecoach (状压DP)

    将车票的使用情况用二进制表示状态,对其进行转移即可. 但是我一开始写的代码是错误的(注释部分),看似思路是正确的,但是暗藏很大的问题. 枚举S,我们要求解的是dp[S][v],这个是从u转移过来的,不 ...

  2. IDEA中直接将 SpringBoot项目打包成 Docker镜像时 pom.xml的配置

    <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactI ...

  3. 18.MongDB系列之批量更新写入Python版

    在实际的工作中,难免批量更新的数量极大,pymongo提供了便捷的客户端供使用 假设读者对pandas比较熟悉,下图为事先准备好的dataframe import pandas as pd from ...

  4. 7.MongoDB系列之聚合框架

    1. 管道阶段和可调参数 聚合框架基于管道的概念.他由多个阶段组成,每个阶段都会提供一组按钮或可调参数.每个阶段对其输入执行不同的数据处理任务,并生成文档已作为输出传递到下一阶段. 2. 阶段常见操作 ...

  5. SSM框架整合图书管理项目

    SSM框架整合 1.建立简单的maven项目 2.导入依赖 <?xml version="1.0" encoding="UTF-8"?> <p ...

  6. 后端框架学习-----mybatis(使用mybatis框架遇到的问题)

    1.配置文件没有注册(解决:在核心配置文件中注册mapper,注册有三种形式.资源路径用斜杆,包和类用点) <mappers> <!--每一个mapper.xml文件都需要在myba ...

  7. Eclipse插件RCP桌面应用开发的点点滴滴

    Eclipse插件开发的点点滴滴 新公司做的是桌面应用程序, 与之前一直在做的web页面 ,相差甚大 . 这篇文章是写于2022年10月底,这时在新公司已经入职了快三月.写作目的是:国内对于eclip ...

  8. JavaScript Array对象的splice方法 数组的添加和删除

    Splice方法  :拼接 splice() 方法用于添加或删除数组中的元素. var index = Array.indexOf(value);    //可以匹配value在Array中的索引,匹 ...

  9. 【k8s】k8s pv、pvc无法删除问题。

    一般删除步骤为:先删除pod再删除pvc最后删除pv 遇到的问题 但是遇到pv使用处于"Terminating"状态,而且删不掉.如下图: 解决办法 直接删除k8s中的记录: ku ...

  10. stm32h750移植lvgl

    之前没做过ui,只用过lcd画几条线写点字,如果按键.菜单什么的全用线画也太麻烦了,所以需要一个ui库. 听说lvgl用的人很多,就打算裸机移植一下用用.本文移植的lvgl版本是lvgl6.2,也移植 ...