Codeforces Round #831 (Div. 1 + Div. 2) A-E
A
题解
知识点:数学。
\(2\) 特判加 \(7\),其他加 \(3\) 直接偶数。
时间复杂度 \(O(1)\)
空间复杂度 \(O(1)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
bool solve() {
int n;
cin >> n;
if (n == 2) cout << 7 << '\n';
else cout << 3 << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
B
题解
知识点:贪心。
注意到,最优能做到周长等于底边之和乘 \(2\) 加上高度最大值乘 \(2\) 。
我们把短的边当作底边,长的边当作高,这样长的边的贡献会最少。
时间复杂度 \(O(n)\)
空间复杂度 \(O(1)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
bool solve() {
int n;
cin >> n;
ll sum = 0;
int mx = 0;
for (int i = 1;i <= n;i++) {
int x, y;
cin >> x >> y;
sum += min(x, y);
mx = max({ mx,x,y });
}
cout << 2 * (sum + mx) << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
C
题解
知识点:贪心,枚举。
从小到大排序后,我们发现单独放一个 \(a[1]\) 或 \(a[n]\) 在 bag3
(或 bag1
)最优,这样就能一次覆盖一段最长的,其他情况因为取在中间,不会超过 \(a[n]-a[1]\) 。
不妨假设单独放了个 \(a[n]\) 在 bag3
,再把剩下的分成两段 \([a[1],a[i-1]],[a[i],a[n-1]]\) 分别放在 bag2,1
(较远的放中间),如此得到解 \(a[n] - a[i-1] + a[i] - a[i-1]\) 。同理 \(a[1]\) 单独放,有解 \(a[i] - a[1] + a[i] - a[i-1]\) 。
枚举这两种的所有情况,取最大值。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int a[200007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
sort(a + 1, a + n + 1);
ll ans = 0;
for (int i = 2;i <= n;i++) {
ans = max({ ans,2LL * a[i] - a[i - 1] - a[1],-2LL * a[i - 1] + a[n] + a[i] });
}
cout << ans << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
D
题解
知识点:贪心,数学。
神奇的华容道。
遍历一遍,能出的直接出,当前不能出的放在除了起点终点之外的地方以后再出,但要保证放之后至少还有两个空位,即只能放 \(nm-4\) 个卡片,否则下一个进来以后就满了动不了,其他情况都能随意移动卡片(华容道qwq)。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int a[100007];
bool solve() {
int n, m, k;
cin >> n >> m >> k;
priority_queue<int> pq;
int p = k;
for (int i = 1;i <= k;i++) cin >> a[i];
for (int i = 1;i <= k;i++) {
while (!pq.empty() && pq.top() == p) pq.pop(), p--;
if (a[i] == p) p--;
else {
pq.push(a[i]);
if (pq.size() >= n * m - 3) return false;
}
}
cout << "YA" << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "TIDAK" << '\n';
}
return 0;
}
E
题解
知识点:树形dp。
设 \(dp[u][0/1]\) 表示对于以 \(u\) 为根的子树,子序列包括/不包括 \(u\) 时的答案。
分两种情况讨论:
\(dp[u][0]\) 时,那么子节点 \(v_i\) 的最长不下降子序列是可以任意合并的,即子节点的答案 \(\max (dp[v_i][0],dp[v_i][1])\) 能加在一起。因为 \(a[v_i]\) 互相大小没有限制,所以可以自定义后拼在一起。那么答案便是 \(\sum \max (dp[v_i][0],dp[v_i][1])\) 。
\(dp[u][1]\) 时,由于根节点 \(u\) 最后只可能等于一个子节点 \(v_i\) ,那么 \(u\) 只可能衔接在一个 \(dp[v_i][1]\) 后面。
\(dp[v_i][0]\) 不能考虑进去。因为,当 \(v_i\) 为根的子树不是条链,一定存在子孙 \(w\) 使得 \(a[v_i]<a[w]\) ,那么 \(a[u]<a[w]\) 不可能衔接到 \(w\) 后面;当 \(v_i\) 为根的子树是链时,则 \(dp[v_i][1] = dp[v_i][0]+1>dp[v_i][0]\) ,没必要选。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
vector<int> g[100007];
int f[100007][2];
void dfs(int u) {
f[u][0] = 0;
f[u][1] = 1;
for (auto v : g[u]) {
dfs(v);
f[u][0] += max(f[v][0], f[v][1]);
f[u][1] = max(f[u][1], f[v][1] + 1);
}
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 2;i <= n;i++) {
int p;
cin >> p;
g[p].push_back(i);
}
dfs(1);
cout << max(f[1][0], f[1][1]) << '\n';
return 0;
}
Codeforces Round #831 (Div. 1 + Div. 2) A-E的更多相关文章
- Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship
Problem Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
- Educational Codeforces Round 43 (Rated for Div. 2)
Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...
- Educational Codeforces Round 35 (Rated for Div. 2)
Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...
- Educational Codeforces Round 63 (Rated for Div. 2) 题解
Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...
- Educational Codeforces Round 39 (Rated for Div. 2) G
Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...
- Educational Codeforces Round 48 (Rated for Div. 2) CD题解
Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...
- Educational Codeforces Round 60 (Rated for Div. 2) 题解
Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...
随机推荐
- java学习第一天.day05
jvm的内存 栈:类方法使用后自动销毁,销毁的好处是释放内存 java方法执行时,在栈区执行 堆: 线程共享的一块内存区域 所有的对象实例以及 数组 都要在堆上分配 每次使用new ...
- iOS影视应用+全网视频下载
又一个新的iOS影视伪装 打开软件连续点击3次列表,然后关闭重新打开即可变身,无广告全免费高画质,还有电视直播 下载地址:https://apps.apple.com/cn/app/贴画壁纸/id16 ...
- 贪吃蛇(C语言版)链表实现
贪吃蛇 gitee:贪吃蛇C语言版: Snake 蛇的结构 typedef struct Snake { int x; int y; struct Snake *next; }; 游戏开始欢迎界面 / ...
- HTML创建访问加密代码
在</head>前面加入即可 普通方式 此方法屏蔽F12查看源码但是屏蔽不了Ctrl+U查看源码 解决方式加密html即可注意!解密比较繁琐切记要记住自己设置的密码 <SCRIPT ...
- windows如何禁止更新
注意!本方法针对windows专业版本 家庭版本可以直接下载一个windows update blocker软件 windows+r快捷键输入代码如下图 gpedit.msc 进入后需要的路径如下 第 ...
- 性能调优——小小的log大大的坑
引言 "只有被线上服务问题毒打过的人才明白日志有多重要!" 我先说结论,谁赞成,谁反对?如果你深有同感,那恭喜你是个社会人了:) 日志对程序的重要性不言而喻,轻巧.简单.无需费脑, ...
- KingbaseES V8R6集群管理运维案例之---repmgr standby switchover故障
案例说明: 在KingbaseES V8R6集群备库执行"repmgr standby switchover"时,切换失败,并且在执行过程中,伴随着"repmr stan ...
- alter role 导致的数据库无法登录问题
ALTER ROLE 用于更改一个数据库角色.只要改角色后续开始一个新会话,指定的值将会成为该会话的默认值,并且会覆盖 kingbase.conf中存在的值或者从命令行收到的值. 显性的更改角色的一 ...
- Git Bash(提交文件到GitHub进行托管)
Introduction 使用Git Bash命令,可以将一个项目上传到Github官网中,进行托管,避免重要文件被误删 1.Git工具下载 Git for Windows 2.在github中新 ...
- NLP新手入门指南|北大-TANGENT
开源的学习资源:<NLP 新手入门指南>,项目作者为北京大学 TANGENT 实验室成员. 该指南主要提供了 NLP 学习入门引导.常见任务的开发实现.各大技术教程与文献的相关推荐等内容, ...