[笔记] CSP 初赛 部分知识整理
几年前整理的东西,要不就发到网上吧
不过现在这些东西里面也有很多考得比以前少了
卡特兰数
\(f(i)=\sum_\limits{i=0}^{n-1}{f(i)f(n-i-1)}\)
其中\(f(0)=1\)
\(f(n)=\)一个凸\(n\)边形用不相交的对角线划分成三角形的方法种数。
证明:对于一条边,在另外的\(n-2\)个顶点中选一个与这两个顶点连边。若选出的节点在这条边左边的节点顺时针方向\(i\)个,则方法数为 \(f(i-1)f(n-i)\) 。
具体例子: n个节点的二叉树的个数;1~n 元素的出栈顺序种数;凸多边形划分;平面直角坐标系中从\((0,0)\)移动到\((n,n)\),只能向右或向上移动一格,且永远不超出\(y=x\)的方法数。
前几项: \(1, 2, 5, 14, 42, 132, 429\cdots\)
二叉树遍历
前序遍历:根左右
中序遍历:左根右
后序遍历:左右根
哈夫曼编码
思想:贪心
\(n\)个字符每个出现\(a_i\)次,每次从优先队列中取出权值最小的两个元素,合并成一个元素,在二叉树上分别连一条边到那两个元素。最后向左的边赋0,向右的边赋1.
完美二叉树\(=\)满二叉树
完全二叉树\(=\)只有最后一行最右边不满的二叉树
中国计算机学会于1984年创办全国青少年计算机程序设计竞赛。
编程语言分类:
设计方法:
- 面向过程:C
- 面向对象:其他
- smalltalk:面向对象鼻祖
执行方式:
- 编译型:C, C++
- 解释型:Python, JavaScript\(\cdots\)
- 混合型:Java, C#\(\cdots\)
图灵奖:美国计算机协会,1966年设立;华人唯一姚期智,2000年获奖
长度为1的线段上随机取两个点期望长度:取中点,讨论,列方程;或建坐标系求体积
抽奖机中有红蓝两色的球,抽到蓝球就继续······设抽到第一个红球之前抽到蓝球的期望个数\(x\),则\(x=\frac{1}{2}\times0+\frac{1}{2}\times(1+x)\), \(x=1\)
TCP/IP四层模型:应用层,传输层,网络层,数据链路层
原码:符号位+绝对值
反码:正数是本身,负数是符号位不变,其他取反
补码:正数是本身,负数是符号位不变,其他取反+1
十进制小数转二进制:
0.6 * 2 = 1.2 ——————- 1
0.2 * 2 = 0.4 ——————- 0
0.4 * 2 = 0.8 ——————- 0
0.8 * 2 = 1.6 ——————- 1
0.6 * 2 = 1.2 ——————- 1\(\cdots\)
主定理
\(T(n)=aT(\frac{n}{b})+f(n)\)
\(f(n)\)是n的幂次,\(log_b(a)\)比这个幂次大,\(T(n)=n^{log_b(a)}\)
\(f(n)=n^{log_b(a)}\log^k(n)\), \(T(n)=n^{log_b(a)}\log^{k+1}(n)\)
\(\cdots\)
稳定的排序方法:冒泡插入 归并基数
P问题:可以在多项式时间内被解决的问题。
NP问题:可以在多项式时间内被验证的问题。或者说,可以在非确定性多项式时间内被解决的问题。
NP-Hard问题:如果可以证明某问题有一个子问题是NP-Hard问题,那么该问题是一个NP-Hard问题。
NP-Complete问题:如果一个问题已经被证明是一个NP-Hard问题,并且可以证明该问题是一个NP问题,那么该问题是NPC问题。
[笔记] CSP 初赛 部分知识整理的更多相关文章
- 2019CSP初赛基础知识整理
一.硬件 计算机发展: 年代 元件 第一代 1946~1958 电子管 第二代 1959~1964 晶体管 第三代 1965~1970 集成电路 第四代 1971~? 大规模集成电路 世界上第一台 ...
- 【笔记】BFC 模型知识整理
网上看了很多 BFC 的概念,发现都说得不是很完整和深入,刚好最近看了一些视频教程说到了 BFC 概念所以记录一下. BFC 的概念: BFC 全称:Block format context 块级格式 ...
- 【OGG】OGG基础知识整理
[OGG]OGG基础知识整理 一.GoldenGate介绍 GoldenGate软件是一种基于日志的结构化数据复制软件.GoldenGate 能够实现大量交易数据的实时捕捉.变换和投递,实现源数据库与 ...
- MySQL 索引知识整理(创建高性能的索引)
前言: 索引优化应该是对查询性能优化的最有效的手段了.索引能够轻易将查询性能提高几个数量级. // 固态硬盘驱动器有和机械硬盘启动器,有着完全不同的性能特性: 然而即使是固态硬盘,索引的原则依然成立, ...
- js事件(Event)知识整理
事件(Event)知识整理,本文由网上资料整理而来,需要的朋友可以参考下 鼠标事件 鼠标移动到目标元素上的那一刻,首先触发mouseover 之后如果光标继续在元素上移动,则不断触发mousemo ...
- Kali Linux渗透基础知识整理(四):维持访问
Kali Linux渗透基础知识整理系列文章回顾 维持访问 在获得了目标系统的访问权之后,攻击者需要进一步维持这一访问权限.使用木马程序.后门程序和rootkit来达到这一目的.维持访问是一种艺术形式 ...
- Kali Linux渗透基础知识整理(二)漏洞扫描
Kali Linux渗透基础知识整理系列文章回顾 漏洞扫描 网络流量 Nmap Hping3 Nessus whatweb DirBuster joomscan WPScan 网络流量 网络流量就是网 ...
- wifi基础知识整理
转自 :http://blog.chinaunix.net/uid-9525959-id-3326047.html WIFI基本知识整理 这里对wifi的802.11协议中比较常见的知识做一个基本的总 ...
- 数据库知识整理<一>
关系型数据库知识整理: 一,关系型数据库管理系统简介: 1.1使用数据库的原因: 降低存储数据的冗余度 提高数据的一致性 可以建立数据库所遵循的标准 储存数据可以共享 便于维护数据的完整性 能够实现数 ...
随机推荐
- 爬虫部署 Gerapy 安装(centos 8)演示
一.安装 pip3 install -U gerapy 使用python3.68版本安装gerapy,报错提示:ModuleNotFoundError: No module named 'setupt ...
- Keep In Line_via牛客网
题目 链接:https://ac.nowcoder.com/acm/contest/28537/H 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语 ...
- 平衡树——splay 二
上文传送门:平衡树--splay 一 - yi_fan0305 - 博客园 (cnblogs.com) OK,我们继续上文,来讲一些其他操作. 七.找排名为k的数 和treap的操作很像,都是通过比较 ...
- 出现 Expected 0 arguments but found 1 的bug原因
问题:在给FileInputStream传入参数时报错 原以为是导错了包,结果试了几次都不行,最后才发现是项目名和这个方法名重复了,修改项目名就可以了! 红线出只是异常,抛出即可解决
- 缓冲流的原理和BufferedOutputStream字节缓冲输出流
缓冲流的原理 BufferedOutputStream字节缓冲输出流 package com.yang.Test.BufferedStudy; import java.io.BufferedOutpu ...
- 使用node命令提示: ‘node‘ 不是内部或外部命令,也不是可运行的程序
使用node命令提示: 'node' 不是内部或外部命令,也不是可运行的程序 该删的都删了,一切没有任何问题,还nvm use 报错乱码的,只要打开命令提示符 ,以管理员身份运行,就一些正常了 (就 ...
- 实践GoF的设计模式:迭代器模式
摘要:迭代器模式主要用在访问对象集合的场景,能够向客户端隐藏集合的实现细节. 本文分享自华为云社区<[Go实现]实践GoF的23种设计模式:迭代器模式>,作者:元闰子. 简介 有时会遇到这 ...
- vue中vuex实现持久化的几种方法
前提:大家都知道vuex真的数据共享是不持久的,例如登录后一刷新,state中存的token就会消失,导致你需要再次进行登录操作 在这给大家列出几种解决方案: 第一种(也是一些项目中常使用的):使用缓 ...
- AI+医疗:使用神经网络进行医学影像识别分析 ⛵
作者:韩信子@ShowMeAI 计算机视觉实战系列:https://www.showmeai.tech/tutorials/46 行业名企应用系列:https://www.showmeai.tech/ ...
- Maven 配置文件如何读取pom.xml的内容
编写配置文件 配置文件读取pom文件内容用@@的方式 logging: level: cn.sail: @logging.level@ org.springframework: warn config ...