Description

题库链接

给定 \(2\sim n\) 一共 \(n-1\) 个数字,第一个人选择一些数字,第二个人选择一些数字,要求第一个人选的任意一个数字和第二个人选择的任意一个数字都互质,求方案数。

\(2\leq n\leq 500\)

Solution

做的时候想偏了...正解做法比较神...

我们考虑对一个数质因数分解,容易发现对于 \(\geq \sqrt{500}\) 的质因数一定最多一个。

我们可以拿 \(\geq \sqrt{500}\) 的质因数为依据分组。对于 \(\leq \sqrt{500}\) 的质因数一共只有 \(8\) 个,我们拿来状压。

如果一个数没有 \(\geq \sqrt{500}\) 的质因数,那么它单独成一组。

显然的是同一组的数不能同一个人拿,因为同一组共同拥有一个 \(\geq \sqrt{500}\) 的质因数(或没有)。

所以我们可以按组来做。

记 \(f_{i,j}\) 表示第一个人选 \(\leq \sqrt{500}\) 的质因数的状态为 \(i\) ,第二个人为 \(j\) 的方案数,显然 \(i\cap j=0\) 。

那么考虑组内 \(\text{DP}\) 。记 \(f_{0/1,i,j}\) 表示第一/二个人选这一组(或是不选)第一个人选 \(\leq \sqrt{500}\) 的质因数的状态为 \(i\) ,第二个人为 \(j\) 的方案数。

首先先将 \(f\) 分别拷一份给 \(g_{0},g_{1}\) 。

组内 \(\text{DP}\) 后再将 \(f'=g_{0}+g_{1}-f\) ,因为都不选的方案算了两次。

最后统计答案即可。

Code

#include <bits/stdc++.h>
#define ll long long
#define pii pair<int, int>
using namespace std;
const int prime[8] = {2, 3, 5, 7, 11, 13, 17, 19};
const int N = 505, SZ = (1<<8)+5; int n, bin[10];
ll p, f[SZ][SZ], g[2][SZ][SZ];
pii a[N]; void work() {
scanf("%d%lld", &n, &p);
bin[0] = 1;
for (int i = 1; i <= 8; i++) bin[i] = (bin[i-1]<<1);
for (int i = 2; i <= n; i++) {
int x = i;
for (int j = 0; j < 8; j++) {
if (x%prime[j] == 0) a[i].second |= bin[j];
while (x%prime[j] == 0) x /= prime[j];
}
a[i].first = x;
}
sort(a+2, a+n+1); f[0][0] = 1;
for (int i = 2; i <= n; i++) {
if (a[i].first == 1 || a[i].first != a[i-1].first)
memcpy(g[0], f, sizeof(g[0])), memcpy(g[1], f, sizeof(g[1]));
for (int j = bin[8]-1; ~j; j--)
for (int k = bin[8]-1; ~k; k--) {
if ((a[i].second&k) == 0)
(g[0][j|a[i].second][k] += g[0][j][k]) %= p;
if ((a[i].second&j) == 0)
(g[1][j][k|a[i].second] += g[1][j][k]) %= p;
}
if (a[i].first == 1 || a[i].first != a[i+1].first) {
for (int j = 0; j < bin[8]; j++)
for (int k = 0; k < bin[8]; k++)
f[j][k] = (g[0][j][k]+g[1][j][k]-f[j][k])%p;
}
}
ll ans = 0;
for (int j = 0; j < bin[8]; j++)
for (int k = 0; k < bin[8]; k++)
(ans += f[j][k]) %= p;
printf("%lld\n", (ans+p)%p);
}
int main() {work(); return 0; }

[NOI 2015]寿司晚宴的更多相关文章

  1. BZOJ 4197 NOI 2015 寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  2. BZOJ 4197 NOI 2015 寿司晚宴

    题面 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 ...

  3. NOI 2015 寿司晚宴 (状压DP+分组背包)

    题目大意:两个人从2~n中随意取几个数(不取也算作一种方案),被一个人取过的数不能被另一个人再取.两个人合法的取法是,其中一个人取的任何数必须与另一个人取的每一个数都互质,求所有合法的方案数 (数据范 ...

  4. 【BZOJ-4197】寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  5. [BZOJ4197][Noi2015]寿司晚宴

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 412  Solved: 279[Submit][Status] ...

  6. BZOJ4197[NOI2005]寿司晚宴

    Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...

  7. HYSBZ 4197 寿司晚宴

    Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...

  8. BZOJ 4197: [Noi2015]寿司晚宴( dp )

    N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...

  9. NOI2015 寿司晚宴

    今年NOI确实是在下输了.最近想把当时不会做的题都写一下. 题意 从2到n(500)这些数字中,选若干分给A,若干分给B,满足不存在:A的某个数和B的某个数的GCD不等于1. 对于寿司晚宴这题,标准解 ...

随机推荐

  1. 【Android开发那点破事】打开APP加载页面实现

    今天的破事呢就说说APP加载页面的实现.一般情况下,当APP打开的时候,我们需要做很多事情,比如检查网络连接啊,初始化一些配置啊等等.我们可以让这些事情在APP完全打开之前做完,然后呢在打开的过程中显 ...

  2. 前端开发 - JavaScript

    本节内容 一.如何编写 二.变量 三.数据类型 四.其他 五.语句与异常 六.函数 JavaScript是一门编程语言,浏览器内置了JavaScript语言的解释器,所以在浏览器上按照JavaScri ...

  3. 12.Scrapy与mongodb交互和设置中间键

    反反爬虫相关机制 Some websites implement certain measures to prevent bots from crawling them, with varying d ...

  4. unigui 设置单元格颜色

    procedure TF_Resource2.UniDBGrid1DrawColumnCell(Sender: TObject; ACol,  ARow: Integer; Column: TUniD ...

  5. ASP.NET Core2利用MassTransit集成RabbitMQ

    在ASP.NET Core上利用MassTransit来集成使用RabbitMQ真的很简单,代码也很简洁.近期因为项目需要,我便在这基础上再次进行了封装,抽成了公共方法,使得使用RabbitMQ的调用 ...

  6. KNIME + Python = 数据分析+报表全流程

    Python 数据分析环境 数据分析领域有很多可选方案,例如SPSS傻瓜式分析工具,SAS专业性商业分析工具,R和python这类需要代码编程类的工具.个人选择是python这类,包括pandas,n ...

  7. JS原生事件处理(跨浏览器)

    一.关于获取事件对象 FF有点倔强,只支持arguments[0],不支持window.event.这次真的不怪IE,虽然把event作为window的属性不合规范,但大家都已经默许这个小问题存在了, ...

  8. SQL SERVER的锁机制(一)——概述(锁的种类与范围)

    锁定:通俗的讲就是加锁.锁定是 Microsoft SQL Server 数据库引擎用来同步多个用户同时对同一个数据块的访问的一种机制. 定义:当有事务操作时,数据库引擎会要求不同类型的锁定,如相关数 ...

  9. 【LA3485】 Bridge

    前言 哈哈哈,垃圾微积分哈哈哈 前置知识:自适应Simpson法与微积分初步,学会编程 Solution 考虑一下我们有的是什么: 一段桥梁的横向距离,悬线的长度,以及高度. 我们发现如果我们重新设一 ...

  10. 【算法python实现】 -- 不同路径

    原题:https://leetcode-cn.com/problems/unique-paths/ 问题描述 n行m列的表格,从a[0][0]出发,每次只能右移一步或者下移一步,求到a[n-1][m- ...