Apache Lucene

PS:

苦学一周全文检索,由原来的搜索小白,到初次涉猎,感觉每门技术都博大精深,其中精髓亦是不可一日而语。那小博猪就简单介绍一下这一周的学习历程, 仅供各位程序猿们参考,这其中不涉及任何私密话题,因此也不用打马赛克了,都是网络分享的开源资料,当然也不涉及任何利益关系。

  Lucene是apache软件基金会4 jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎(英文与德文两种西方语言)。Lucene的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能,或者是以此为基础建立起完整的全文检索引擎。Lucene是一套用于全文检索和搜寻的开源程式库,由Apache软件基金会支持和提供。Lucene提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。在Java开发环境里Lucene是一个成熟的免费开源工具。就其本身而言,Lucene是当前以及最近几年最受欢迎的免费Java信息检索程序库。人们经常提到信息检索程序库,虽然与搜索引擎有关,但不应该将信息检索程序库与搜索引擎相混淆。


讲解之前,先来分享一些资料

  首先呢,学习任何一门新的亦或是旧的开源技术,百度其中一二是最简单的办法,先了解其中的大概,思想等等这里就贡献一个讲解很到位的ppt。已经被我转成了PDF,便于搜藏。

  其次,关于第一次编程初探,建议还是查看官方资料。百度到的资料,目前Lucene已经更新到4.9版本,这个版本需要1.7以上的JDK,所以如果还用1.6甚至是1.5的小盆友,请参考低版本,由于我用的1.6,因此在使用Lucene4.0。

  这是Lucene4.0的官网文档:http://lucene.apache.org/core/4_0_0/core/overview-summary.html

  这里非常佩服Lucene的开元贡献者,可以阅读Lucene in Action,作者最初想要写软件赚钱,最后贡献给了Apache,跑题了。

  最后,提醒学习Lucene的小盆友们,这个开源软件的版本更新不慢,版本之间的编程风格亦是不同,所以如果百度到的帖子,可能这段代码,用了4.0或者3.6就会不好使。

  比如,以前版本的申请IndexWriter时,是这样的:

 IndexWriter indexWriter  =   new IndexWriter(indexDir,luceneAnalyzer, true ); 

  但是4.0,我们需要配置一个conf,把配置内容放到这个对象中:

    IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_CURRENT, analyzer);
IndexWriter iwriter = new IndexWriter(directory, config);

  所以,请一定要参考官方文档的编程风格,进行代码的书写

  最后的最后,从官网上面下载下来的文件,已经上传至百度网盘,欢迎下载。

  

  这是其中最常用的五个文件:

  第一个,也是最重要的,Lucene-core-4.0.0.jar,其中包括了常用的文档,索引,搜索,存储等相关核心代码。

  第二个,Lucene-analyzers-common-4.0.0.jar,这里面包含了各种语言的词法分析器,用于对文件内容进行关键字切分,提取。

  第三个,Lucene-highlighter-4.0.0.jar,这个jar包主要用于搜索出的内容高亮显示。

  第四个和第五个,Lucene-queryparser-4.0.0.jar,提供了搜索相关的代码,用于各种搜索,比如模糊搜索,范围搜索,等等。


废话说到这里,下面我们简单的讲解一下什么是全文检索

  比如,我们一个文件夹中,或者一个磁盘中有很多的文件,记事本、world、Excel、pdf,我们想根据其中的关键词搜索包含的文件。例如,我们输入Lucene,所有内容含有Lucene的文件就会被检查出来。这就是所谓的全文检索。

  因此,很容易的我们想到,应该建立一个关键字与文件的相关映射,盗用ppt中的一张图,很明白的解释了这种映射如何实现。

  在Lucene中,就是使用这种“倒排索引”的技术,来实现相关映射。


有了这种映射关系,我们就来看看Lucene的架构设计

  下面是Lucene的资料必出现的一张图,但也是其精髓的概括。

  我们可以看到,Lucene的使用主要体现在两个步骤:

  1 创建索引,通过IndexWriter对不同的文件进行索引的创建,并将其保存在索引相关文件存储的位置中。

  2 通过索引查寻关键字相关文档。

  下面针对官网上面给出的一个例子,进行分析:

 1   Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_CURRENT);
2
3 // Store the index in memory:
4 Directory directory = new RAMDirectory();
5 // To store an index on disk, use this instead:
6 //Directory directory = FSDirectory.open("/tmp/testindex");
7 IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_CURRENT, analyzer);
8 IndexWriter iwriter = new IndexWriter(directory, config);
9 Document doc = new Document();
10 String text = "This is the text to be indexed.";
11 doc.add(new Field("fieldname", text, TextField.TYPE_STORED));
12 iwriter.addDocument(doc);
13 iwriter.close();
14
15 // Now search the index:
16 DirectoryReader ireader = DirectoryReader.open(directory);
17 IndexSearcher isearcher = new IndexSearcher(ireader);
18 // Parse a simple query that searches for "text":
19 QueryParser parser = new QueryParser(Version.LUCENE_CURRENT, "fieldname", analyzer);
20 Query query = parser.parse("text");
21 ScoreDoc[] hits = isearcher.search(query, null, 1000).scoreDocs;
22 assertEquals(1, hits.length);
23 // Iterate through the results:
24 for (int i = 0; i < hits.length; i++) {
25 Document hitDoc = isearcher.doc(hits[i].doc);
26 assertEquals("This is the text to be indexed.", hitDoc.get("fieldname"));
27 }
28 ireader.close();
29 directory.close();

  

索引的创建

  首先,我们需要定义一个词法分析器。

  比如一句话,“我爱我们的中国!”,如何对他拆分,扣掉停顿词“的”,提取关键字“我”“我们”“中国”等等。这就要借助的词法分析器Analyzer来实现。这里面使用的是标准的词法分析器,如果专门针对汉语,还可以搭配paoding,进行使用。

1 Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_CURRENT);

  参数中的Version.LUCENE_CURRENT,代表使用当前的Lucene版本,本文环境中也可以写成Version.LUCENE_40。

  

  第二步,确定索引文件存储的位置,Lucene提供给我们两种方式:

  1 本地文件存储

Directory directory = FSDirectory.open("/tmp/testindex");

  2 内存存储

Directory directory = new RAMDirectory();

  可以根据自己的需要进行设定。

   

  第三步,创建IndexWriter,进行索引文件的写入。

IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_CURRENT, analyzer);
IndexWriter iwriter = new IndexWriter(directory, config);

  这里的IndexWriterConfig,据官方文档介绍,是对indexWriter的配置,其中包含了两个参数,第一个是目前的版本,第二个是词法分析器Analyzer。

  

  第四步,内容提取,进行索引的存储。

Document doc = new Document();
String text = "This is the text to be indexed.";
doc.add(new Field("fieldname", text, TextField.TYPE_STORED));
iwriter.addDocument(doc);
iwriter.close();

  第一行,申请了一个document对象,这个类似于数据库中的表中的一行。

  第二行,是我们即将索引的字符串。

  第三行,把字符串存储起来(因为设置了TextField.TYPE_STORED,如果不想存储,可以使用其他参数,详情参考官方文档),并存储“表明”为"fieldname".

  第四行,把doc对象加入到索引创建中。

  第五行,关闭IndexWriter,提交创建内容。

  

  这就是索引创建的过程。

关键字查询:

  第一步,打开存储位置

DirectoryReader ireader = DirectoryReader.open(directory);

  第二步,创建搜索器

IndexSearcher isearcher = new IndexSearcher(ireader);

  第三步,类似SQL,进行关键字查询

QueryParser parser = new QueryParser(Version.LUCENE_CURRENT, "fieldname", analyzer);
Query query = parser.parse("text");
ScoreDoc[] hits = isearcher.search(query, null, 1000).scoreDocs;
assertEquals(1, hits.length);
for (int i = 0; i < hits.length; i++) {
Document hitDoc = isearcher.doc(hits[i].doc);
assertEquals("This is the text to be indexed.",hitDoc.get("fieldname"));
}

  这里,我们创建了一个查询器,并设置其词法分析器,以及查询的“表名“为”fieldname“。查询结果会返回一个集合,类似SQL的ResultSet,我们可以提取其中存储的内容。

  关于各种不同的查询方式,可以参考官方手册,或者推荐的PPT

  第四步,关闭查询器等。

ireader.close();
directory.close();

最后,博猪自己写了个简单的例子,可以对一个文件夹内的内容进行索引的创建,并根据关键字筛选文件,并读取其中的内容

创建索引:

  

/**
* 创建当前文件目录的索引
* @param path 当前文件目录
* @return 是否成功
*/
public static boolean createIndex(String path){
Date date1 = new Date();
List<File> fileList = getFileList(path);
for (File file : fileList) {
content = "";
//获取文件后缀
String type = file.getName().substring(file.getName().lastIndexOf(".")+1);
if("txt".equalsIgnoreCase(type)){ content += txt2String(file); }else if("doc".equalsIgnoreCase(type)){ content += doc2String(file); }else if("xls".equalsIgnoreCase(type)){ content += xls2String(file); } System.out.println("name :"+file.getName());
System.out.println("path :"+file.getPath());
// System.out.println("content :"+content);
System.out.println(); try{
analyzer = new StandardAnalyzer(Version.LUCENE_CURRENT);
directory = FSDirectory.open(new File(INDEX_DIR)); File indexFile = new File(INDEX_DIR);
if (!indexFile.exists()) {
indexFile.mkdirs();
}
IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_CURRENT, analyzer);
indexWriter = new IndexWriter(directory, config); Document document = new Document();
document.add(new TextField("filename", file.getName(), Store.YES));
document.add(new TextField("content", content, Store.YES));
document.add(new TextField("path", file.getPath(), Store.YES));
indexWriter.addDocument(document);
indexWriter.commit();
closeWriter(); }catch(Exception e){
e.printStackTrace();
}
content = "";
}
Date date2 = new Date();
System.out.println("创建索引-----耗时:" + (date2.getTime() - date1.getTime()) + "ms\n");
return true;
}

进行查询:

/**
* 查找索引,返回符合条件的文件
* @param text 查找的字符串
* @return 符合条件的文件List
*/
public static void searchIndex(String text){
Date date1 = new Date();
try{
directory = FSDirectory.open(new File(INDEX_DIR));
analyzer = new StandardAnalyzer(Version.LUCENE_CURRENT);
DirectoryReader ireader = DirectoryReader.open(directory);
IndexSearcher isearcher = new IndexSearcher(ireader); QueryParser parser = new QueryParser(Version.LUCENE_CURRENT, "content", analyzer);
Query query = parser.parse(text); ScoreDoc[] hits = isearcher.search(query, null, 1000).scoreDocs; for (int i = 0; i < hits.length; i++) {
Document hitDoc = isearcher.doc(hits[i].doc);
System.out.println("____________________________");
System.out.println(hitDoc.get("filename"));
System.out.println(hitDoc.get("content"));
System.out.println(hitDoc.get("path"));
System.out.println("____________________________");
}
ireader.close();
directory.close();
}catch(Exception e){
e.printStackTrace();
}
Date date2 = new Date();
System.out.println("查看索引-----耗时:" + (date2.getTime() - date1.getTime()) + "ms\n");
}

全部代码:

运行结果:

  所有包含man关键字的文件,都被筛选出来了。

  


参考资料

JAVA读取文本大全:http://blog.csdn.net/csh624366188/article/details/6785817

Lucene官方文档:http://lucene.apache.org/core/4_0_0/core/overview-summary.html

Lucene 全文检索引擎的更多相关文章

  1. Apache Lucene(全文检索引擎)—创建索引

    目录 返回目录:http://www.cnblogs.com/hanyinglong/p/5464604.html 本项目Demo已上传GitHub,欢迎大家fork下载学习:https://gith ...

  2. Apache Lucene(全文检索引擎)—分词器

    目录 返回目录:http://www.cnblogs.com/hanyinglong/p/5464604.html 本项目Demo已上传GitHub,欢迎大家fork下载学习:https://gith ...

  3. 【Lucene】Apache Lucene全文检索引擎架构之构建索引2

    上一篇博文中已经对全文检索有了一定的了解,这篇文章主要来总结一下全文检索的第一步:构建索引.其实上一篇博文中的示例程序已经对构建索引写了一段程序了,而且那个程序还是挺完善的.不过从知识点的完整性来考虑 ...

  4. 【Lucene】Apache Lucene全文检索引擎架构之入门实战1

    Lucene是一套用于全文检索和搜寻的开源程式库,由Apache软件基金会支持和提供.Lucene提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻.在Java开发环境里Lucene是一个成熟的 ...

  5. Apache Lucene(全文检索引擎)—搜索

    目录 返回目录:http://www.cnblogs.com/hanyinglong/p/5464604.html 本项目Demo已上传GitHub,欢迎大家fork下载学习:https://gith ...

  6. Lucene全文检索引擎

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  7. 【Lucene】Apache Lucene全文检索引擎架构之中文分词和高亮显示4

    前面总结的都是使用Lucene的标准分词器,这是针对英文的,但是中文的话就不顶用了,因为中文的语汇与英文是不同的,所以一般我们开发的时候,有中文的话肯定要使用中文分词了,这一篇博文主要介绍一下如何使用 ...

  8. 【Lucene】Apache Lucene全文检索引擎架构之搜索功能3

    上一节主要总结了一下Lucene是如何构建索引的,这一节简单总结一下Lucene中的搜索功能.主要分为几个部分,对特定项的搜索:查询表达式QueryParser的使用:指定数字范围内搜索:指定字符串开 ...

  9. 全文检索引擎 Lucene.net

    全文搜索引擎是目前广泛应用的主流搜索引擎.它的工作原理是计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行 ...

随机推荐

  1. Android原生和H5交互;Android和H5混合开发;WebView点击H5界面跳转到Android原生界面。

    当时业务的需求是这样的,H5有一个活动商品列表的界面,IOS和Android共用这一个界面,点击商品可以跳转到Android原生的商品详情界面并传递商品ID:  大概就是点击H5界面跳转到Androi ...

  2. 【eclipse jar包】在编写java代码时,为方便编程,常常会引用别人已经实现的方法,通常会封装成jar包,我们在编写时,只需引入到Eclipse中即可。

    Eclipse中导入外部jar包 在编写java代码时,为方便编程,常常会引用别人已经实现的方法,通常会封装成jar包,我们在编写时,只需引入到Eclipse中即可. 工具/原料 Eclipse 需要 ...

  3. MYSQL--表分区、查看分区

      一.       mysql分区简介 数据库分区 数据库分区是一种物理数据库设计技术.虽然分区技术可以实现很多效果,但其主要目的是为了在特定的SQL操作中减少数据读写的总量以缩减sql语句的响应时 ...

  4. MyBatis批量增删改查操作

      前文我们介绍了MyBatis基本的增删该查操作,本文介绍批量的增删改查操作.前文地址:http://blog.csdn.net/mahoking/article/details/43673741 ...

  5. 网易云音乐mp3外链、真实地址下载方法

    一个网易音乐外链地址长期有效,很简单的方法: 第一步打开网易云音乐,随便找到一首歌,播放,复制网址的ID, 例如:杨钰莹的心雨,网址是: http://music.163.com/#/song?id= ...

  6. 我也说说Nginx——先搞搞清楚

    一.Nginx的诞生 这个很多文章里都有,总之就是当年啊有个技术困难叫C10K问题,就是如何解决10万个客户端的并发请求问题.然后有个俄罗斯大牛某某某,在02年使用C语言搞了个东东声称可以处理每天5亿 ...

  7. 37.如何把握好 transition 和 animation 的时序,创作描边按钮特效

    原文地址:https://segmentfault.com/a/1190000015089396 拓展地址:https://scrimba.com/c/cWqNNnC2 HTML code: < ...

  8. 简单ATM机功能实现及感想

    感想:  在那一天下午气喘吁吁的上了六楼 在建民的课上 都要带电脑 第一次上这样的课,每一次都是个段子 ,这一次考试是学前考试,什么也不知道 ,但是通过百度, 发现JAVA有很多还都和C语言相似的地方 ...

  9. 关于 Glassfish

    GlassFish 是一款强健的商业兼容应用服务器,达到产品级质量,可免费用于开发.部署和重新分发.开发者可以免费获得源代码,还可以对代码进行更改 GlassFish 是用于构建 Java EE 5应 ...

  10. nodejs操作monggodb数据库封装

    var MongoClient=require('mongodb').MongoClient; var DbUrl='mongodb://localhost:27017/productmanage'; ...