With $Dsu \ on \ tree$ we can answer queries of this type:

How many vertices in the subtree of vertex $v$ has some property in $O (n \log n)$ time (for all of the queries)?

这题写的是轻重儿子(重链剖分)版本的 $Dsu \ on \ tree$

具体流程如下:

每次先递归计算轻儿子,再单独递归重儿子,计算完后轻儿子的一些信息需要删掉,但是重儿子的信息无需删除,如此出解,相当于是优化了暴力的多余部分

每个节点会作为轻儿子被计算,重链剖分上垂直有 $\log n$ 条链,故复杂度 $O (n \log n)$

代码

 #include <iostream>
#include <cstdio>
#include <cstring> using namespace std; typedef long long LL; const int MAXN = 1e05 + ;
const int MAXM = 1e05 + ;
const int MAXC = 1e05 + ; struct LinkedForwardStar {
int to; int next;
} ; LinkedForwardStar Link[MAXM << ];
int Head[MAXN]= {};
int size = ; void Insert (int u, int v) {
Link[++ size].to = v;
Link[size].next = Head[u]; Head[u] = size;
} int N;
int colour[MAXN]; int son[MAXN]= {};
int subsize[MAXN]= {};
void DFS (int root, int father) {
son[root] = - ;
subsize[root] = ;
for (int i = Head[root]; i; i = Link[i].next) {
int v = Link[i].to;
if (v == father)
continue;
DFS (v, root);
subsize[root] += subsize[v];
if (son[root] == - || subsize[v] > subsize[son[root]])
son[root] = v;
}
}
int vis[MAXN]= {};
int total[MAXC]= {};
int maxv = ;
LL sum = ;
void calc (int root, int father, int delta) { // 统计答案
total[colour[root]] += delta;
if (delta > && total[colour[root]] >= maxv) {
if (total[colour[root]] > maxv)
sum = , maxv = total[colour[root]];
sum += colour[root];
}
for (int i = Head[root]; i; i = Link[i].next) {
int v = Link[i].to;
if (v == father || vis[v])
continue;
calc (v, root, delta);
}
}
LL answer[MAXN]= {};
void Solve (int root, int father, int type) { // type表示是不是重儿子信息
for (int i = Head[root]; i; i = Link[i].next) {
int v = Link[i].to;
if (v == father || v == son[root])
continue;
Solve (v, root, );
}
if (~ son[root])
Solve (son[root], root, ), vis[son[root]] = ;
calc (root, father, );
answer[root] = sum;
if (~ son[root])
vis[son[root]] = ;
if (! type) // 如果是轻儿子信息就需删除
calc (root, father, - ), maxv = sum = ;
} int getnum () {
int num = ;
char ch = getchar (); while (! isdigit (ch))
ch = getchar ();
while (isdigit (ch))
num = (num << ) + (num << ) + ch - '', ch = getchar (); return num;
} int main () {
N = getnum ();
for (int i = ; i <= N; i ++)
colour[i] = getnum ();
for (int i = ; i < N; i ++) {
int u = getnum (), v = getnum ();
Insert (u, v), Insert (v, u);
}
DFS (, ), Solve (, , );
for (int i = ; i <= N; i ++) {
if (i > )
putchar (' ');
printf ("%lld", answer[i]);
}
puts (""); return ;
} /*
4
1 2 3 4
1 2
2 3
2 4
*/ /*
15
1 2 3 1 2 3 3 1 1 3 2 2 1 2 3
1 2
1 3
1 4
1 14
1 15
2 5
2 6
2 7
3 8
3 9
3 10
4 11
4 12
4 13
*/

Codeforces 600E - Lomsat gelral 「$Dsu \ on \ tree$模板」的更多相关文章

  1. Codeforces 600E Lomsat gelral(dsu on tree)

    dsu on tree板子题.这个trick保证均摊O(nlogn)的复杂度,要求资瓷O(1)将一个元素插入集合,清空集合时每个元素O(1)删除.(当然log的话就变成log^2了) 具体的,每次先遍 ...

  2. Codeforces 600E - Lomsat gelral(树上启发式合并)

    600E - Lomsat gelral 题意 给出一颗以 1 为根的树,每个点有颜色,如果某个子树上某个颜色出现的次数最多,则认为它在这课子树有支配地位,一颗子树上,可能有多个有支配的地位的颜色,对 ...

  3. Codeforces.600E.Lomsat gelral(dsu on tree)

    题目链接 dsu on tree详见这. \(Description\) 给定一棵树.求以每个点为根的子树中,出现次数最多的颜色的和. \(Solution\) dsu on tree模板题. 用\( ...

  4. Codeforces 600E Lomsat gelral (树上启发式合并)

    题目链接 Lomsat gelral 占坑……等深入理解了再来补题解…… #include <bits/stdc++.h> using namespace std; #define rep ...

  5. Codeforces 600E. Lomsat gelral(Dsu on tree学习)

    题目链接:http://codeforces.com/problemset/problem/600/E n个点的有根树,以1为根,每个点有一种颜色.我们称一种颜色占领了一个子树当且仅当没有其他颜色在这 ...

  6. codeforces 600E Lomsat gelral

    题面:codeforces600E 学习一下$dsu \ on \ tree$.. 这个东西可以处理很多无修改子树问题,复杂度通常为$O(nlogn)$. 主要操作是:我们先把整棵树链剖一下,然后每次 ...

  7. codeforces 600E. Lomsat gelral 启发式合并

    题目链接 给一颗树, 每个节点有初始的颜色值. 1为根节点.定义一个节点的值为, 它的子树中出现最多的颜色的值, 如果有多种颜色出现的次数相同, 那么值为所有颜色的值的和. 每一个叶子节点是一个map ...

  8. codeforces 600E . Lomsat gelral (线段树合并)

    You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...

  9. 【Codeforces】600E. Lomsat gelral

    Codeforces 600E. Lomsat gelral 学习了一下dsu on tree 所以为啥是dsu而不是dfs on tree??? 这道题先把这棵树轻重链剖分了,然后先处理轻儿子,处理 ...

随机推荐

  1. wifi

    当自己流量不够用时,总想用点免费的wifi 但大部分的wifi都是需要密码的,所以,搜到一款软件,wifi万能钥匙,它的好处就是可以破解一些密码比较简单的wifi,相反,有利也有弊,因为大部分连接的还 ...

  2. Uploadify提示-Failed,上传不了文件,跟踪onUploadError事件,errorMsg:2156 SecurityError Error #2156 null

    在使用Uploadify上传文件时,提示-Failed,上传不了文件 折腾中.....,没有结果.....%>_<%... 于是跟踪onUploadError事件,发现 errorMsg: ...

  3. DOM之节点类型加例子

    DOM= Document Object Model,文档对象模型,DOM可以以一种独立于平台和语言的方式访问和修改一个文档的内容和结构.换句话说,这是表示和处理一个HTML或XML文档的常用方法.D ...

  4. Docker(一)-Docker介绍

    什么就Docker? Docker是一个开源项目, 诞生于2013年初,最初是dotCloud公司内部的一个业余项目.它基于Google公司推出的Go语言实现.项目后来加入了Linux基金会,遵从了A ...

  5. Yii框架的原代码

    http://www.digpage.com/app_struct.html#index-php

  6. 学习Spring Boot:(十二)Mybatis 中自定义枚举转换器

    前言 在 Spring Boot 中使用 Mybatis 中遇到了字段为枚举类型,数据库存储的是枚举的值,发现它不能自动装载. 解决 内置枚举转换器 MyBatis内置了两个枚举转换器分别是:org. ...

  7. NOIP2018TG 初赛复习

    Date: 20180911 TCP/IP OSI7面向对象的程序设计语言 1.不是自顶向下2.simula 67语言 第一个3.继承性.封装性.多态性NOIP支持的语言环境:对于c / c++ :D ...

  8. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  9. 【洛谷P1991】无线通讯网

    题目大意:给定一个 N 个顶点的完全图,边有边权,现在要求使得图中所有顶点联通的情况下,第 M-1 大的边最小值是多少. 题解:所有点联通的最小要求是所有点和连接这些点的边构成原图的一棵生成树,那么问 ...

  10. StringEscapeUtils的常用使用,防止SQL注入及XSS注入

    StringEscapeUtils的常用使用,防止SQL注入及XSS注入 2017年10月20日 11:29:44 小狮王 阅读数:8974   版权声明:本文为博主原创文章,转载请注明出处. htt ...