矩阵快速幂解法:

这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了)

注:如果你不会矩阵乘法,可以了解一下P3390的题解

P1939 【模板】矩阵加速(数列)

P3390 【模板】矩阵快速幂

P1306 斐波那契公约数

P1962 斐波那契数列

P4838 P哥破解密码

由题意可得:相邻两个珠子中必有金属性珠子。这其实就可以理解为不能有连续的两个木属性珠子。这样一看,此题就和P4838 P哥破解密码差不多了。只不过这题是个2*2矩阵乘法

进入正文:

我们先一次将1~n中每一个珠子的情况枚举


// n=1 n=2 n=3 n=4 n=5 n=6 .......
//可放金属性珠子: 1 2 3 5 8 13 .......
//可放木属性珠子: 1 1 2 3 5 8 .......

不难发现这就是一个斐波那契数列的递推

但是:这是一个手环!

所以第一个珠子与最后一个手环是相连的,他们会互相影响!

不过他们只会影响对方而不会影响其他珠子,我们可以将第一颗珠子选金属性与木属性这两种情况分开:

//第一颗珠子为金属性: 若 n=5
// 1 2 3 4 n .......
//金属性: 1 1 2 3 5 .......
//木属性: 0 1 1 2 3 ....... //第一颗珠子为木属性: n=5
// 1 2 3 4 n .......
//金属性: 0 1 1 2 3 .......
//木属性: 1 0 1 1 0 .......
//最后一颗不能为木!
//两种情况加起来就是样例1的解了

所以此题就是求斐波那契数列第n项第n-1项的两倍

然后就可矩阵快速幂了!递推矩阵如下

//                     1 1
// 0 1

不过我们当然不能止步于此:

因为还有一种更无脑有效的方法:

既然矩阵可以快速幂,那么说明每两个递推数(即答案)之间的递推矩阵是一样的!

所以我们可以先手算两组结果,然后直接推出递推矩阵:


// 3 4 乘 递推矩阵 = 4 7 // 解上述方程得递推矩阵为:
// 0 1
// 3 4 乘 = 4 7
// 1 1

下面上代码:

#include<bits/stdc++.h>
using namespace std;
#define mod 1000000007//简化一下
struct ju{
long long a[2][2];//不用long long只有8分哦(亲测QAQ)
ju operator *(const ju &x){
ju res;//这里需要另外建个矩阵存答案
memset(res.a,0,sizeof(res.a));
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
res.a[i][j]=(res.a[i][j]+a[i][k]%mod*(x.a[k][j])%mod)%mod;
return res;
} //重载运算符,(可以写成函数)
}base,ans;//两个基本矩阵
int main(){
long long n,t;
scanf("%lld",&t);//只有t就不写快读了
while(t--){
scanf("%lld",&n);n--;//n要减一,不然会错 QAQ
base.a[0][0]=0;base.a[0][1]=1;base.a[1][0]=1;base.a[1][1]=1;
ans.a[0][0]=2;ans.a[0][1]=1;ans.a[1][0]=0;ans.a[1][1]=0;//初始化
while(n){//快速幂,(也可以写成函数)
if(n%2==1) ans=ans*base;
base=base*base;
n/=2;
}
printf("%lld\n",ans.a[0][1]%mod);
} //输出
return 0;
}

代码中ans的初始化已经是n=1时的答案了所以n要减一。

啊,写题解好累啊,是我太蒟了吗。。

洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解的更多相关文章

  1. [洛谷P4910]帕秋莉的手环

    题目大意:有一个$n(n\leqslant10^{18})$个点的环,每个点可以是$0$或$1$,要求相邻点中至少一个$1$,问方案数,多组询问. 题解:先考虑是一条链的情况,令$f_{i,j}$表示 ...

  2. 洛谷 P4910 帕秋莉的手环

    题意 多组数据,给出一个环,要求不能有连续的\(1\),求出满足条件的方案数 \(1\le T \le 10, 1\le n \le 10^{18}\) 思路 20pts 暴力枚举(不会写 60pts ...

  3. P4910 帕秋莉的手环

    题目背景 帕秋莉是蕾米莉亚很早结识的朋友,现在住在红魔馆地下的大图书馆里.不仅擅长许多魔法,还每天都会开发出新的魔法.只是身体比较弱,因为哮喘,会在咏唱符卡时遇到麻烦. 她所用的属性魔法,主要是生命和 ...

  4. [Luogu] P4910 帕秋莉的手环

    题目背景 帕秋莉是蕾米莉亚很早结识的朋友,现在住在红魔馆地下的大图书馆里.不仅擅长许多魔法,还每天都会开发出新的魔法.只是身体比较弱,因为哮喘,会在咏唱符卡时遇到麻烦. 她所用的属性魔法,主要是生命和 ...

  5. 【题解】Luogu P4910 帕秋莉的手环

    原题传送门 "连续的两个中至少有1个金的"珂以理解为"不能有两个木相连" 我们考虑一个一个将元素加入手环 设f\([i][0/1]\)表示长度为\(i\)手环末 ...

  6. 洛谷3176 [HAOI2015]数字串拆分 (矩阵乘法+dp)

    qwq真的是一道好题qwq自己做基本是必不可能做出来的. 首先,如果这个题目只是求一个\(f\)数组的话,那就是一道裸题. 首先,根据样例 根据题目描述,我们能发现其实同样数字的不同排列,也是属于不同 ...

  7. 洛谷 P4569 - [BJWC2011]禁忌(AC 自动机+矩阵乘法)

    题面传送门 又好久没做过 AC 自动机的题了,做道练练手罢( 首先考虑对于某个固定的字符串怎样求出它的伤害,我们考虑贪心,每碰到出现一个模式串就将其划分为一段,最终该字符串的代价就是划分的次数.具体来 ...

  8. 洛谷P2886 [USACO07NOV]Cow Relays G (矩阵乘法与路径问题)

    本题就是求两点间只经过n条边的最短路径,定义广义的矩阵乘法,就是把普通的矩阵乘法从求和改成了取最小值,把内部相乘改成了相加. 代码包含三个内容:广义矩阵乘法,矩阵快速幂,离散化: 1 #include ...

  9. 【Cogs2187】帕秋莉的超级多项式(多项式运算)

    [Cogs2187]帕秋莉的超级多项式(多项式运算) 题面 Cogs 题解 多项式运算模板题 只提供代码了.. #include<iostream> #include<cstdio& ...

随机推荐

  1. Scrum Meeting NO.1

    Scrum Meeting No.1 1.会议内容 不出所料地,组员们都在忙着写编译.编译大作业的进度已经接近尾声,码农们已经磨刀霍霍向软工-- 在上一周,bugphobia和我们组决定共同使用一套后 ...

  2. 【Alpha】第一次Scrum Meeting

    本次会议内容概括如下: 总结了一周以来大家任务的完成情况,对消耗时间进行统计,并评估了各自对团队的贡献(影响)程度 整理并融合所有人的工作的结果生成了相应的总结性文档 进一步明确了团队中各个成员的定位 ...

  3. [2017BUAA软工助教]结对组队

    请同学们把第一次结对编程双方的学号评论在本博客下,只要一位同学评论即可.例如: 14061195 + 14061183

  4. 作业六:分析Linux内核创建一个新进程的过程

    分析Linux内核创建一个新进程的过程 进程描述符PCB----task_struct数据结构 操作系统:1.进程管理 2.内存管理 3 文件系统 一.新进程如何创建和修改task_struct数据结 ...

  5. String基础

    一: String,StringBuffer与StringBuilder的区别??String 字符串常量StringBuffer 字符串变量(线程安全)StringBuilder 字符串变量(非线程 ...

  6. 第一次Spring会议成果意见汇总

    第一组:9-625  只看到了界面,而两台笔记本电脑通过局域网进行通信的功能则没有看到,没有看到实质性的成果.他们的软件还是非常实用的,它仅通过局域网就能通信,大大减少了流量费用,提高了通信效率,希望 ...

  7. Believe

    虽然上了一周的软件工程,可是还是不造软件工程是干什么的.听了一节gitlab,似懂非懂,感觉很高大上的样子,自己折腾了许久,还是没有进展,真心无奈. 真是件考验耐性的事~不过,so what?会成功的 ...

  8. 圆桌的项目Alpha冲刺——测试

    测试工作安排 作为一个测试计划来讲,核心的三个要素是时间,资源,范围.时间就是什么时候做以及要花多久做,资源就是你要调用的人力.机器等资源,范围是你要测试的东西以及测试重点. 时间:每天完成相应的模块 ...

  9. Docker(二十三)-Docker使用pipework配置本地网络

    需求 在使用Docker的过程中,有时候我们会有将Docker容器配置到和主机同一网段的需求.要实现这个需求,我们只要将Docker容器和主机的网卡桥接起来,再给Docker容器配上IP就可以了. 下 ...

  10. JavaFile类和递归

    八.File类和递归 8.1 概述 java.io.File 类时文件和目录路径名的抽象表示,主要用于文件和目录的创建.查找和产出等操作. 8.2 构造方法 public File(String pa ...