(2017北大优特测试第9题)

已知实数 \(a_i\)(\(i=1,2,3,4,5\))满足 \((a_1-a_2)^2+(a_2-a_3)^2+(a_3-a_4)^2+(a_4-a_5)^2=1\),则 \(a_1-2a_2-a_3+2a_5\) 的最大值是_______
A.\(2\sqrt 2\)
B.\(2\sqrt 5\)
C.\(\sqrt 5\)
D.\(\sqrt{10}\)


提示:设$x=a_1-a_2,y=a_2-a_3,z=a_3-a_4,w=a_4-a_5;\textbf{则}x^2+y^2+z^2=1$

$(a_1-2a_2-a_3+2a_5)=(x-y-2z-2w)$
由柯西得$(x-y-2z-2w)\le \sqrt{(x^2+y^2+z^2+w^2)(1+1+4+4)}=\sqrt{10}$

注:此类题目看似复杂,条件化简以下就能看清方向。

MT【164】条件化简的更多相关文章

  1. 化简复杂逻辑,编写紧凑的if条件语句

    当业务逻辑很复杂,涉及多个条件的真假,或者多种条件下都会执行同一动作时,如何编写紧凑的if语句呢?本文借由一个实际例子,利用数学的布尔逻辑整理条件,最终产生if语句. 问题 在<X3 重聚> ...

  2. 化简复杂逻辑,编写紧凑的if条件语句(二):依据if子句顺序化简条件

    <化简复杂逻辑,编写紧凑的if条件语句>已经得出了跳.等.飞.异常的各自条件,方便起见这里重新贴一下. 立即跃迁:!a && b && d 等待跃迁:!a ...

  3. NOIP201402比例化简

    比例化简 [问题描述]在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果.例如,对某一观点表示支持的有 1498 人,反对的有 902 人,那么赞同与反对的比例可以简单的记为1498:9 ...

  4. 【mongoDB高级篇②】大数据聚集运算之mapReduce(映射化简)

    简述 mapReduce从字面上来理解就是两个过程:map映射以及reduce化简.是一种比较先进的大数据处理方法,其难度不高,从性能上来说属于比较暴力的(通过N台服务器同时来计算),但相较于grou ...

  5. poj3708:函数式化简+高精度进制转换+同余方程组

    题目大意 给定一个函数 找出满足条件   等于 k 的最小的x m,k,d已知 其中 m,k 很大需要使用高精度存储 思路: 对 函数f(m)进行化简 ,令t=ceil( log(d,m) ) 可以得 ...

  6. 线性可分SVM中线性规划问题的化简

    在网上找了许多关于线性可分SVM化简的过程,但似乎都不是很详细,所以凭借自己的理解去详解了一下. 线性可分SVM的目标是求得一个超平面(其实就是求w和b),在其在对目标样本的划分正确的基础上,使得到该 ...

  7. YZOI Easy Round 2_化简(simplify.c/cpp/pas)

    Description 给定一个多项式,输出其化简后的结果. Input 一个字符串,只含有关于字母x 的多项式,不含括号与分式,没有多余的空格. Output 一个字符串,化简后的多项式,按照次数从 ...

  8. 《Linear Algebra and Its Application》-chaper1-行化简法解决线性方程组

    在实际生产生活中,需要我们解大量的线性方程组,例如是有探测.线性规划.电路等,这里我们便从理论角度建立一套解决线性方程组的体系. 线性方程组: 形如下面形式的方程组称为线性方程组. 回想起解决二元线性 ...

  9. 线性代数-矩阵-【5】矩阵化简 C和C++实现

    点击这里可以跳转至 [1]矩阵汇总:http://www.cnblogs.com/HongYi-Liang/p/7287369.html [2]矩阵生成:http://www.cnblogs.com/ ...

随机推荐

  1. C++面向对象模型

    1. 基础知识 C++编译器怎样完毕面向对象理论到计算机程序的转化? 换句话:C++编译器是怎样管理类.对象.类和对象之间的关系 详细的说:详细对象调用类写的方法,那,c++编译器是怎样区分,是那个详 ...

  2. python_环境的配置

    1.首先登入官网:https://www.python.org/downloads/windows/ 下载: 下载executable installer 2.安装 ipython,jupyter 地 ...

  3. 使用selenium进行自动化测试

    selenium 支持多个客户端:ruby,Java,python.可以用来对网页进行全面测试,支持真实浏览器测试. firefox IE chrome safari 支持多操作系统: Linux w ...

  4. 20155204《网络对抗》Exp8 Web基础

    20155204<网络对抗>Exp8 Web基础 一.基础问题回答 1.什么是表单 表单在网页中主要负责数据采集功能.一个表单有三个基本组成部分: 表单标签:这里面包含了处理表单数据所用C ...

  5. 网络对抗技术 2017-2018-2 20152515 Exp6 信息搜集与漏洞扫描

    1.实践目标 掌握信息搜集的最基础技能与常用工具的使用方法.包括: (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具体服务的 ...

  6. OFS环境,删除Resource 时出现错误失败,应该如何继续

    From the Windows failover cluster manager,select the group listener, stop it, and delete it.  Do the ...

  7. ubuntu安装微信客户端

    安装linux微信: apt-get install git git clone https://github.com/geeeeeeeeek/electronic-wechat.git cd ele ...

  8. libgdx自制简易Flappy Bird

    Flappy Bird,好吧,无需多说.今天年初不知咋的,一下子就火了,而且直接跃居榜首,在ios和android平台都是如此,实在难以理解.传说其作者每天收入能达到5w刀,着实碉堡了... 好吧,咱 ...

  9. .NET Core容器化开发系列(零)——计划

    .NET Core相当完善的跨平台特性以及其轻量化的底层接口为我们能顺畅进行微服务开发提供了非常棒的基础. 作为支撑微服务最常见的基础技术--容器化将是本系列的核心内容. 接下来我计划用一个月左右的时 ...

  10. 谷歌算法研究员:我为什么钟爱PyTorch?

    老铁们好!我是一名前谷歌的算法研究员,处理深度学习相关项目已有三年经验,接下来会在平台上给大家分享一些深度学习,计算机视觉和统计机器学习的心得体会,当然了内推简历一定是收的.这篇文章,不想说太多学术的 ...