Description:

Sylvia 是一个热爱学习的女♂孩子。

前段时间,Sylvia 参加了学校的军训。众所周知,军训的时候需要站方阵。

Sylvia 所在的方阵中有n×m名学生,方阵的行数为 n,列数为 m。

为了便于管理,教官在训练开始时,按照从前到后,从左到右的顺序给方阵中 的学生从 1 到 n×m 编上了号码(参见后面的样例)。即:初始时,第 i 行第 j 列 的学生的编号是(i−1)×m+j。

然而在练习方阵的时候,经常会有学生因为各种各样的事情需要离队。在一天 中,一共发生了 q件这样的离队事件。每一次离队事件可以用数对(x,y)(1≤x≤n,1≤y≤m)描述,表示第 x 行第 y 列的学生离队。

在有学生离队后,队伍中出现了一个空位。为了队伍的整齐,教官会依次下达 这样的两条指令:

  1. 向左看齐。这时第一列保持不动,所有学生向左填补空缺。不难发现在这条 指令之后,空位在第 x 行第 m 列。

  2. 向前看齐。这时第一行保持不动,所有学生向前填补空缺。不难发现在这条 指令之后,空位在第 n 行第 m 列。

教官规定不能有两个或更多学生同时离队。即在前一个离队的学生归队之后, 下一个学生才能离队。因此在每一个离队的学生要归队时,队伍中有且仅有第 n 行 第 m 列一个空位,这时这个学生会自然地填补到这个位置。

因为站方阵真的很无聊,所以 Sylvia 想要计算每一次离队事件中,离队的同学 的编号是多少。

注意:每一个同学的编号不会随着离队事件的发生而改变,在发生离队事件后 方阵中同学的编号可能是乱序的。

Hint

Solution

一年前暴力敲了30pts

一年后暴力敲了60pts

没什么长进啊

还是不会正解。

1.不懂树状数组

2.不想写平衡树

所以我们写动态开点线段树

首先发现,对于x=1的点,可以想到对这个链开一棵长度为max(n,m)+q的线段树。每次找第k个有数的地方,然后放到最后的位置。

发现,每次向前对齐只有最后一列要动,

向左看齐,只是当前的行会向左移动。

所以,为了便于操作,我们开n+1棵线段树,前n棵维护i行,1~m-1的答案

最后一棵n+1,维护最后一列n个答案。

然后我们就得到了一个优秀的MLE做法辣!~~

所以就要动态开点线段树。

(因为我比较弱)所以简单讲解一下动态开点线段树。

发现,有的时候,线段树需要维护的区间很大很大,但是实际用到的节点很少很少。

那么,我们干脆就不要开这么多的节点,用到的时候再向内存要。

也就是说,我们建立了一棵残疾的线段树,缺少很多枝叶,但是绝对够用了。

画个图大概理解一下(虽然也不太对)

实心边框的点都是我们申请内存给的,虚的点是没用的。就算申请也不用,实在是浪费资源。

所以,

我们开局只有一个根,装备叶子全靠给。

例如我们要建立一个权值线段树,但是在线操作不让你离散化,值域又是inf级别的,

像这样,即使这个区间的范围很大,但是如果询问q比较少的话,我们只需要qloginf个节点,就可以办到。

(发现和主席树有点像,但是省空间的思想还是有些不同的。)

然后我们用动态开点线段树来做这个题。

线段树根节点维护的区间是max(n,m)+q;

开始每个线段树甚至连根也不用建,需要的时候会建起来。

每个线段树节点记录sz,子树实际的人数大小。(开始的时候,只有1~n(m-1)是sz=r-l+1的)

sz可以用一个函数处理。虽然并没有这么多的叶子,但是实际上,建出这么多的叶子,也是这个sz(这也是能动态开点的条件)

再记录一个val(long long型需注意),记录当前节点所代表的人的编号

这个编号val只有在叶子节点才有用。

其实每次询问引起的变化是:树x的第y个人走了,进入了树n+1的末尾,树n+1的第x走了,进入树x的末尾。

每次询问,如果y==m就进入线段树n+1查询,否则进入线段树x查询,找到答案ans输出

查询的时候,顺便sz--,删掉途经点的sz(就不用pushup了)

把ans这个编号放进n+1线段树的末尾(新开一个位置)

同样,途经sz++

如果y!=m说明,第x棵线段树最后进来一个人。就把n+1的第x个人查询(删除),放进线段树x的末尾(新开一个位置)。

这样子,其实每棵线段树根节点的sz都保持为m-1(或n)

Code

#include<bits/stdc++.h>
#define mid ((l+r)>>1)
using namespace std;
typedef long long ll;
const int N=3e5+;
const int M=1e7+;
ll n,m,q;
struct node{
int ls,rs;
int sz;
ll val;
}t[M];
int id,tot;
int rt[N];
ll now;
int cur[N];
int up;
int get(int l,int r){
if(now==n+){
if(r<=n) return r-l+;
if(l<=n) return n-l+;
return ;
}
if(r<m) return r-l+;
if(l<m) return m-l;
return ;
}
ll query(int &x,int l,int r,int c){
if(!x){
x=++tot;
t[x].sz=get(l,r);
if(l==r){
if(now==n+) t[x].val=l*m;
else t[x].val=(now-)*m+l;
}
}
t[x].sz--;
if(l==r) return t[x].val;
if((!t[x].ls&&c<=get(l,mid))||c<=t[t[x].ls].sz) return query(t[x].ls,l,mid,c);
else{
if(!t[x].ls) c-=get(l,mid);
else c-=t[t[x].ls].sz;
return query(t[x].rs,mid+,r,c);
}
}
void upda(int &x,int l,int r,int to,ll d){
if(!x){
x=++tot;
t[x].sz=get(l,r);
if(l==r){
t[x].val=d;
}
}
t[x].sz++;
if(l==r) return;
if(to<=mid) return upda(t[x].ls,l,mid,to,d);
else return upda(t[x].rs,mid+,r,to,d);
}
int main()
{
scanf("%lld%lld%lld",&n,&m,&q);
int x,y;
ll ans;
up=max(n,m)+q;
while(q--){
scanf("%d%d",&x,&y);
if(y==m) now=n+,ans=query(rt[now],,up,x);
else now=x,ans=query(rt[now],,up,y);
printf("%lld\n",ans); now=n+;
upda(rt[now],,up,n+(++cur[now]),ans);
if(y!=m){
now=n+;
ans=query(rt[now],,up,x);
now=x;
upda(rt[now],,up,m-+(++cur[now]),ans);
}
}
return ;
}

upda:2018.11.2

感觉这个动态开点线段树其实不算是典型的动态开点23333

一般的线段树都是区间表示连续一些下标之类。动态开点也是如此。

但是这个做法的话,愣是把线段树写成了平衡树的存储方式。

区间的长度仅仅代表的是预留空间。

就是把许多点压成了一个点。

NOIP2017 列队——动态开点线段树的更多相关文章

  1. Luogu P3960 列队(动态开点线段树)

    P3960 列队 题意 题目描述 Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia所在的方阵中有\(n \times m ...

  2. 洛谷P3960 列队(动态开节点线段树)

    题意 题目链接 Sol 看不懂splay..,看不懂树状数组... 只会暴力动态开节点线段树 观察之后不难发现,我们对于行和列需要支持的操作都是相同的:找到第\(k\)大的元素并删除,在末尾插入一个元 ...

  3. [2016湖南长沙培训Day4][前鬼后鬼的守护 chen] (动态开点线段树+中位数 or 动规 or 贪心+堆优化)

    题目大意 给定一个长度为n的正整数序列,令修改一个数的代价为修改前后两个数的绝对值之差,求用最小代价将序列转换为不减序列. 其中,n满足小于500000,序列中的正整数小于10^9 题解(引自mzx神 ...

  4. [bzoj 3531][SDOI2014]旅行(树链剖分+动态开点线段树)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3531 分析: 对于每个颜色(颜色<=10^5)都建立一颗线段树 什么!那么不是M ...

  5. 【BZOJ-4636】蒟蒻的数列 动态开点线段树 ||(离散化) + 标记永久化

    4636: 蒟蒻的数列 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 247  Solved: 113[Submit][Status][Discuss ...

  6. codeforces 893F - Physical Education Lessons 动态开点线段树合并

    https://codeforces.com/contest/893/problem/F 题意: 给一个有根树, 多次查询,每次查询对于$x$i点的子树中,距离$x$小于等于$k$的所有点中权值最小的 ...

  7. codeforces 915E - Physical Education Lessons 动态开点线段树

    题意: 最大$10^9$的区间, $3*10^5$次区间修改,每次操作后求整个区间的和 题解: 裸的动态开点线段树,计算清楚数据范围是关键... 经过尝试 $2*10^7$会$MLE$ $10^7$会 ...

  8. CF915E Physical Education Lessons 动态开点线段树

    题目链接 CF915E Physical Education Lessons 题解 动态开点线段树 代码 /* 动态开点线段树 */ #include<cstdio> #include&l ...

  9. 洛谷P3313 [SDOI2014]旅行(树链剖分 动态开节点线段树)

    题意 题目链接 Sol 树链剖分板子 + 动态开节点线段树板子 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...

随机推荐

  1. 20155339 Exp7 网络欺诈防范

    20155339 Exp7 网络欺诈防范 .基础问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 当连接局域网的时候应该最容易被攻击,比如说连接了一些不清楚是什么的WiFi其实是很容易收 ...

  2. [图片生成]使用VAEs生成新图片

    变分自动编码器生成图片 从隐图像空间进行采样以创建全新的图像或编辑现有图像是目前创作AI最受欢迎和最成功的应用方式. 图像隐空间取样 图像生成的关键思想是开发表示的低维潜在空间(自然是矢量空间),其中 ...

  3. 开源软件License汇总

    用到的open source code越多,遇到的开源License协议就越多.License是软件的授权许可,里面详尽表述了你获得代码后拥有的权利,可以对别人的作品进行何种操作,何种操作又是被禁止的 ...

  4. Gitlab+Jenkins学习之路(十四)之自动化脚本部署实践

    目录 一.环境说明和准备 1.环境说明 2.服务器准备工作 二.发布脚本编写 1.自动化部署流程设计 2.自动化部署脚本编写 三.发布测试 1.开发机和github添加ssh信任 2.克隆项目到开发机 ...

  5. CS190.1x-ML_lab4_ctr_student

    这次lab主要主要是研究click-through rate (CTR).数据集来自于Kaggle的Criteo Labs dataset.相关ipynb文件见我github. 作业分成5个部分:on ...

  6. maven核心,pom.xml详解

    什么是pom?    pom作为项目对象模型.通过xml表示maven项目,使用pom.xml来实现.主要描述了项目:包括配置文件:开发者需要遵循的规则,缺陷管理系统,组织和licenses,项目的u ...

  7. 解决Docker容器时区及时间不同步的问题

    前几天在测试应用的功能时,发现存入数据库中的数据create_time或者update_time字段总是错误,其他数据都是正常的,只有关于时间的字段是错误的. 进入linux服务器中查看,也没有任何的 ...

  8. 快速定位iOS线上BUG在哪个控制器崩溃

    快速定位iOS线上App崩溃在哪个控制器里面,需要和后台配合使用 下载本SDK并手动添加到项目里 新建所有的页面都继承于YZViewController 在AppDelegate的didFinishL ...

  9. linux之grep 基础

    第一章 -a    将binary文件以text文件的方式搜寻数据-c    只输出匹配行的计数,计算找到匹配的次数-I(大写i)    不区分大小写(只适合用于单字符)-h    查询多文件时不显示 ...

  10. Nginx 配置高可用

    阅读本文需要安装Nginx 一 什么是高可用 nginx作为负载均衡服务器 所有请求都到了nginx 可见nginx处于非常重要的位置 如果nginx服务器宕机 后端web服务器将无法提供服务 影响严 ...