【刷题】BZOJ 2095 [Poi2010]Bridges
Description
YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛。现在YYD想骑单车从小岛1出发,骑过每一座桥,到达每一个小岛,然后回到小岛1。霸中同学为了让YYD减肥成功,召唤了大风,由于是海上,风变得十分大,经过每一座桥都有不可避免的风阻碍YYD,YYD十分ddt,于是用泡芙贿赂了你,希望你能帮他找出一条承受的最大风力最小的路线。
Input
输入:第一行为两个用空格隔开的整数n(2<=n<=1000),m(1<=m<=2000),接下来读入m行由空格隔开的4个整数a,b(1<=a,b<=n,a<>b),c,d(1<=c,d<=1000),表示第i+1行第i座桥连接小岛a和b,从a到b承受的风力为c,从b到a承受的风力为d。
Output
输出:如果无法完成减肥计划,则输出NIE,否则第一行输出承受风力的最大值(要使它最小)
Sample Input
4 4
1 2 2 4
2 3 3 4
3 4 4 4
4 1 5 4
Sample Output
4
HINT
注意:通过桥为欧拉回路
Solution
考虑二分答案,转化为判断可行问题
在二分后,将边权小于等于二分的限制的边加入,跑欧拉回路
然而这个图是一个混合图,所以就跑混合图的欧拉回路,一个网络流就搞定了
要注意的是,题目还要求要到所有点,所以还得判一下所有点是否联通,用个并查集就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000+10,inf=0x3f3f3f3f;
int n,m,e,clk,s,t,beg[MAXN],cur[MAXN],nex[MAXN<<3],to[MAXN<<3],cap[MAXN<<3],level[MAXN],vis[MAXN],d[MAXN],fa[MAXN];
std::queue<int> q;
struct node{
int a,b,c,d;
};
node side[MAXN<<2];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
inline bool check(int limit)
{
memset(d,0,sizeof(d));
int cnt=0;
for(register int i=1;i<=n;++i)fa[i]=i;
for(register int i=1;i<=m;++i)
{
int u=found(side[i].a),v=found(side[i].b);
if(side[i].c<=limit)d[side[i].a]++,d[side[i].b]--;
else if(side[i].d<=limit)d[side[i].a]--,d[side[i].b]++;
if(u!=v&&(side[i].c<=limit||side[i].d<=limit))fa[u]=v,cnt++;
}
if(cnt<n-1)return false;
for(register int i=1;i<=n;++i)
if(d[i]&1)return false;
e=1;memset(beg,0,sizeof(beg));
int all=0;
for(register int i=1;i<=n;++i)
if(d[i]>0)insert(s,i,d[i]>>1),all+=(d[i]>>1);
else insert(i,t,-(d[i]>>1));
for(register int i=1;i<=m;++i)
if(side[i].c<=limit&&side[i].d<=limit)insert(side[i].a,side[i].b,1);
if(Dinic()==all)return true;
else return false;
}
int main()
{
read(n);read(m);s=n+1,t=s+1;
int l=1,r=0,ans=0;
for(register int i=1;i<=m;++i)
{
int a,b,c,d;read(a);read(b);read(c);read(d);
side[i]=(node){a,b,c,d};
chkmax(r,c);chkmax(r,d);
}
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid))ans=mid,r=mid-1;
else l=mid+1;
}
if(!ans)puts("NIE");
else write(ans,'\n');
return 0;
}
【刷题】BZOJ 2095 [Poi2010]Bridges的更多相关文章
- bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]
2095: [Poi2010]Bridges 二分答案,混合图欧拉路判定 一开始想了一个上下界网络流模型,然后发现不用上下界网络流也可以 对于无向边,强制从\(u \rightarrow v\),计算 ...
- BZOJ 2095: [Poi2010]Bridges
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 869 Solved: 299[Submit][Stat ...
- bzoj 2095 [Poi2010]Bridges 判断欧拉维护,最大流+二分
[Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1448 Solved: 510[Submit][Status][D ...
- BZOJ 2095 [POI2010]Bridges (最大流、欧拉回路)
洛谷上有这题,但是输出方案缺SPJ..(而且我也懒得输出方案了) 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2095 题解: 首先判 ...
- BZOJ 2095 [Poi2010]Bridges (二分+最大流判断混合图的欧拉回路)
题面 nnn个点,mmm条双向边(正向与反向权值不同),求经过最大边权最小的欧拉回路的权值 分析 见 commonc大佬博客 精髓就是通过最大流调整无向边的方向使得所有点的入度等于出度 CODE #i ...
- bzoj 2095: [Poi2010]Bridges(二分法+混合图的欧拉回路)
[题意] 给定n点m边的无向图,对于边u,v,从u到v边权为c,从v到u的边权为d,问能够经过每条边一次且仅一次,且最大权值最小的欧拉回路. [思路] 二分答案mid,然后切断权值大于mid的边,原图 ...
- BZOJ.2095.[POI2010]Bridges(最大流ISAP 二分 欧拉回路)
题目链接 最小化最大的一条边,二分答案.然后就变成了给一张无向图定向使其为欧拉回路 二分答案后对于一个位置的两条边可能都保留,即双向边,需要给它定向:可能只保留小的一条,即单向边,不需考虑 如何给它定 ...
- [BZOJ2095][Poi2010]Bridges 最大流(混合图欧拉回路)
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MB Description YYD为了减肥,他来到了瘦海,这是一个巨大的海, ...
- [BZOJ2095][Poi2010]Bridges 二分+网络流
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1187 Solved: 408[Submit][Sta ...
随机推荐
- 20155306 白皎 0day漏洞——漏洞利用原理之DEP
20155306 白皎 0day漏洞--漏洞利用原理之DEP 一.DEP机制的保护原理 1.为什么出现DEP? 溢出攻击的根源在于现代计算机对数据和代码没有明确区分这一先天缺陷,就目前来看重新去设计计 ...
- WPF编程,通过Path类型制作沿路径运动的动画另一种方法。
原文:WPF编程,通过Path类型制作沿路径运动的动画另一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/d ...
- [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]
题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...
- [CF963E]Circles of Waiting[高斯消元网格图优化+期望]
题意 你初始位于 \((0,0)\) ,每次向上下左右四个方向走一步有确定的概率,问你什么时候可以走到 以 \((0,0)\)为圆心,\(R\) 为半径的圆外. \(R\le 50\) 分析 暴力 \ ...
- [COCI2017-2018#6] Alkemija
题意 一共有 \(n\) 种物质,已知开始你有 \(m\) 种物质且数量足够多,再给出 \(K\) 个物质的转化规则(一堆物质变成另一堆),问一共能够得到多少种物质. 分析 对 \(n\) 种物质和 ...
- SpringBoot中使用Quartz笔记
Quartz可以用来做什么? Quartz是一个任务调度框架,可用来做定时任务. 吧啦吧啦......... 还是直接上代码. application.properties 配置文件. * * ? ...
- RxJS v6 学习指南
为什么要使用 RxJS RxJS 是一套处理异步编程的 API,那么我将从异步讲起. 前端编程中的异步有:事件(event).AJAX.动画(animation).定时器(timer). 异步常见的问 ...
- effective c++ 笔记 (49-52)
//---------------------------15/04/27---------------------------- //#49 了解new-handler的行为 { /* 1:在o ...
- Vxlan抓包
实验目的:验证Openstack vxlan组网模式验证虚拟机数据是否通过物理网卡流出 一. 同网段不同主机间虚拟机通讯 (同网段通讯直接通过物理机隧道口链接对端物理机隧道口,不需要通过网络节点): ...
- 树莓派3b安装Nginx和php7和百度语音合成模块
1.安装sox系统mp3音频播放模块(项目需要) sudo apt-get install lame sudo apt-get install sox sudo apt-get install lib ...