Who Gets the Most Candies?

Time Limit: 5000 MS Memory Limit: 0 KB

64-bit integer IO format: %I64d , %I64u Java class name: Main

[Submit] [Status] [Discuss]

Description

N children are sitting in a circle to play a game.

The children are numbered from 1 to N in clockwise order. Each of them has a card with a non-zero integer on it in his/her hand. The game starts from the K-th child, who tells all the others the integer on his card and jumps out of the circle. The integer on his card tells the next child to jump out. Let A denote the integer. If A is positive, the next child will be the A-th child to the left. If A is negative, the next child will be the (−A)-th child to the right.

The game lasts until all children have jumped out of the circle. During the game, the p-th child jumping out will get F(p) candies where F(p) is the number of positive integers that perfectly divide p. Who gets the most candies?

Input

There are several test cases in the input. Each test case starts with two integers N (0 < N ≤ 500,000) and K (1 ≤ KN) on the first line. The next N lines contains the names of the children (consisting of at most 10 letters) and the integers (non-zero with magnitudes within 108) on their cards in increasing order of the children’s numbers, a name and an integer separated by a single space in a line with no leading or trailing spaces.

Output

Output one line for each test case containing the name of the luckiest child and the number of candies he/she gets. If ties occur, always choose the child who jumps out of the circle first.

Sample Input

4 2
Tom 2
Jack 4
Mary -1
Sam 1

Sample Output

Sam 3

  if(val[pos]>=0)//顺时针  
                k = (k-1+val[pos]-1)%n+1; 
    else//逆时针 
                k = ((k-1+val[pos])%n+n)%n+1; 
#include <stdio.h>
#include <string.h>
#define L(x) (x<<1)
#define R(x) (x<<1|1)
const int M = ;
int n,id;
struct tree
{
int l;
int r;
int sum; //sum 表 该区间剩余人数 } node[M*]; struct data
{
int val;
char name[];
} pp[M]; int ans[M]; //ans[i]保存第i个人跳出能得到的糖果数量 void Build (int l,int r,int root)
{
node[root].l = l;
node[root].r = r;
node[root].sum = r - l + ;
if (l == r)
return ;
int mid = (l + r)>>;
Build(l,mid,root*);
Build(mid+,r,root*+);
}
int update (int key,int root)
{
node[root].sum --;
if (node[root].l == node[root].r)
return node[root].l;
if (node[root*].sum >= key)
return update(key,root*);
else
return update (key - node[root*].sum,root*+);
}
void count_ans() ///n人中 第几个跳出来的人获得最多 ///反素数
{
memset (ans,,sizeof(ans)); //计算ans
for (int i = ; i <= n; i ++)
{
ans[i] ++; ///均==1了
for (int j = *i; j <= n; j += i)
ans[j] ++; ///ans[2]=2 ans[3]=2 ans[4]=2 ans[4]=3 ......
}
int max = ans[];
id = ;
for (int i = ; i <= n; i ++) //找出第几个人跳出获得的糖最多
if (ans[i] > max)
{
max = ans[i];
id = i;
}
}
int main ()
{
int i,k,mod;
while (~scanf ("%d %d",&n,&k))
{
count_ans();
for (i = ; i <= n; i ++)
scanf ("%s %d",pp[i].name,&pp[i].val);
Build (,n,);
mod = node[].sum;
int pos = ;
pp[].val = ;
n = id;
while (n --)
{
if (pp[pos].val > ) //k表剩余的人中从左起第k中出队(PS:k的求法是看别人的)
k = ((k + pp[pos].val - )%mod + mod)%mod + ;
else
k = ((k + pp[pos].val - )%mod + mod)%mod + ;
pos = update(k,); mod = node[].sum; ///不断更新后的结果
}
printf ("%s %d\n",pp[pos].name,ans[id]);
}
return ;
} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <iostream>
#include <stdio.h>
#include <string.h> using namespace std;
#define MAX 500000 const int antiprime[] = {,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,};
const int factor[] = {,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}; struct node
{
int l;
int r;
int cnt;
} tr[*MAX]; struct p
{
char name[];
int v;
} pp[MAX]; int build(int l,int r,int root)
{
tr[root].l=l;
tr[root].r=r;
int mid=(l+r)/;
tr[root].cnt=tr[root].r-tr[root].l+;
if(l!=r)
{
build(l,mid,root*);
build(mid+,r,root*+);
}
} int update(int root,int k)
{
tr[root].cnt--;
if(tr[root].l==tr[root].r)
return tr[root].l;
if(tr[root*].cnt >= k)
return update(root*, k);
else
return update(root*+, k - tr[root*].cnt);
} int main()
{
int n,k;
while(scanf("%d%d",&n,&k)!=EOF)
{
for(int i=; i<=n; i++)
scanf("%s%d",&pp[i].name,&pp[i].v);
build(,n,); ///建树
int cnt=;
while(antiprime[cnt]<=n) cnt++;
cnt--;
int pos=;
pp[pos].v=;
for(int i=; i<antiprime[cnt]; i++)
{
if(pp[pos].v > ) ///顺时针
{
k = ((k + pp[pos].v - ) % tr[].cnt + tr[].cnt) % tr[].cnt + ;
}
else ///逆时针
{
k = ((k + pp[pos].v - ) % tr[].cnt + tr[].cnt) % tr[].cnt + ;
}
pos = update(, k); ///更新一下
}
printf("%s %d\n", pp[pos].name, factor[cnt]);
}
return ;
}

*******

定义  反素数:

问题描述:

对于任何正整数x,起约数的个数记做g(x).例如g(1)=1,g(6)=4.

如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数.

现在给一个N,求出不超过N的最大的反素数.

比如:输入1000 输出 840

思维过程:

求[1..N]中约数在大的反素数-->求约数最多的数

如果求约数的个数 756=2^2*3^3*7^1

(2+1)*(3+1)*(1+1)=24

基于上述结论,给出算法:按照质因数大小递增顺序搜索每一个质因子,枚举每一个质因子

为了剪枝:

性质一:一个反素数的质因子必然是从2开始连续的质数.

因为最多只需要10个素数构造:2,3,5,7,11,13,17,19,23,29

性质二:p=2^t1*3^t2*5^t3*7^t4.....必然t1>=t2>=t3>=....

(以上摘自百度百科)

以hdu4228 和zoj2562为例

hdu4228

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>

using namespace std;

typedef __int64 lld;
lld p[1010];
lld prime[30]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};

void getartprime(lld cur,int cnt,int limit,int k)
{
   
//cur:当前枚举到的数;
   
//cnt:该数的因数个数;
   
//limit:因数个数的上限;2^t1*3^t2*5^t3……t1>=t2>=t3……

//第k大的素数
   
if(cur>((lld)1<<60) ||
cnt>150) return ;
    if(p[cnt]!=0
&&
p[cnt]>cur)//当前的因数个数已经记录过且当时记录的数比当前枚举到的数要大,则替换此因数个数下的枚举到的数

p[cnt]=cur;
   
if(p[cnt]==0)//此因数个数的数还没有出现过,则记录
       
p[cnt]=cur;
    lld
temp=cur;
    for(int
i=1;i<=limit;i++)//枚举数
    {
       
temp=temp*prime[k];
       
if(temp>((lld)1<<60))
return;
       
getartprime(temp,cnt*(i+1),i,k+1);

}
}
int main()
{
    int n;

getartprime(1,1,75,0);

for(int
i=1;i<=75;i++)
    {
       
if(p[i*2-1]!=0 && p[i*2]!=0)
           
p[i]=min(p[i*2-1],p[i*2]);
       
else if(p[i*2]!=0)
           
p[i]=p[i*2];
       
else
           
p[i]=p[i*2-1];
    }

while(scanf("%d",&n),n)
    {
       
printf("%I64d\n",p[n]);

}
    return
0;
}

zoj 2562

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>

using namespace std;

typedef long long lld;

lld
prime[20]={2,3,5,7,11,13,17,19,23,29,31,37,39,41,43,47,53};
lld n;
lld bestcurr,largecnt;//bestcurr
相同最大因数个数中值最小的数,largecnt:n范围内最大的因数个数
void getarcprime(lld curr,int cnt,int limit,int k)
{
   
if(curr>n)
       
return ;
   
if(largecnt<cnt)//此时枚举到的因数个数比之前记录的最大的因数个数要大,就替换最大因数个数

{
       
largecnt=cnt;
       
bestcurr=curr;
    }
   
if(largecnt==cnt &&
bestcurr>curr)//替换最优值
       
bestcurr=curr;
    lld
temp=curr;
    for(int
i=1;i<=limit;i++)
    {
       
temp=temp*prime[k];
       
if(temp>n)
           
return;
       
getarcprime(temp,cnt*(i+1),i,k+1);

}
}
int main()
{
   
while(scanf("%lld",&n)!=EOF)
    {
       
bestcurr=0;
       
largecnt=0;
       
getarcprime(1,1,50,0);
       
printf("%lld\n",bestcurr);
    }
    return
0;
}


poj 2886 线段树的更新+反素数的更多相关文章

  1. POJ 2886 线段树单点更新

    转载自:http://blog.csdn.net/sdj222555/article/details/6878651 反素数拓展参照:http://blog.csdn.net/ACdreamers/a ...

  2. poj 2886 线段树+反素数

    Who Gets the Most Candies? Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 12744   Acc ...

  3. poj 2886 (线段树+反素数打表) Who Gets the Most Candies?

    http://poj.org/problem?id=2886 一群孩子从编号1到n按顺时针的方向围成一个圆,每个孩子手中卡片上有一个数字,首先是编号为k的孩子出去,如果他手上的数字m是正数,那么从他左 ...

  4. poj 3468 线段树区间更新/查询

    Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...

  5. hdu 1698+poj 3468 (线段树 区间更新)

    http://acm.hdu.edu.cn/showproblem.php?pid=1698 这个题意翻译起来有点猥琐啊,还是和谐一点吧 和涂颜色差不多,区间初始都为1,然后操作都是将x到y改为z,注 ...

  6. poj 2828(线段树单点更新)

    Buy Tickets Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 18561   Accepted: 9209 Desc ...

  7. POJ 3225 线段树区间更新(两种更新方式)

    http://blog.csdn.net/niuox/article/details/9664487 这道题明显是线段树,根据题意可以知道: (用0和1表示是否包含区间,-1表示该区间内既有包含又有不 ...

  8. POJ 2828 (线段树 单点更新) Buy Tickets

    倒着插,倒着插,这道题是倒着插! 想一下如果 Posi 里面有若干个0,那么排在最前面的一定是最后一个0. 从后往前看,对于第i个数,就应该插在第Posi + 1个空位上,所以用线段树来维护区间空位的 ...

  9. POJ 3225 (线段树 区间更新) Help with Intervals

    这道题搞了好久,其实坑点挺多.. 网上找了许多题解,发现思路其实都差不多,所以就不在重复了. 推荐一篇比较好的题解,请戳这. 另外,如果因为可能要更新多次,但最终查询只需要一次,所以没有写pushup ...

随机推荐

  1. PHP学习笔记(二)

    1.表单 PHP 的 $_GET和 $_POST用于检索表单中的值,比如用户输入. $_GET和$_POST变量分别用于收集来自 method="get" 和method=&quo ...

  2. 模态框MODAL的一些事件捕捉

    下表列出了模态框中要用到事件.这些事件可在函数中当钩子使用. 事件 描述 实例 show.bs.modal 在调用 show 方法后触发. $('#identifier').on('show.bs.m ...

  3. 找不到类SimpleJdbcTemplate ParameterizedRowMapper cannot be resolved

    找不到类SimpleJdbcTemplate 背景 想编译个web应用,原来spring-jdbc.jar用的是Spring 3.1,今天改成用Spring 4.3,报了这个错误. 现象 编译不通过, ...

  4. [转载]How To Install Nginx And PHP-FPM On CentOS 6 Via Yum

    http://www.lifelinux.com/how-to-install-nginx-and-php-fpm-on-centos-6-via-yum/ http://blog.csdn.net/ ...

  5. 关于 Web Api 2 认证与授权

    认证与授权 认证与授权,Authentication and Authorize,这个是两个不同的事.认证是对访问身份进行确认,如验证用户名和密码,而授权是在认证之后,判断是否具有权限进行某操作,如 ...

  6. websocket项目电子签字使用场景

    场景描述:进入页面时,如果设置强制签字,发送签字webSocket连接,同时页面有个重新签字按钮,这个按钮会多次调用 第一步:先建立一个websocket的js文件,名叫signSocket.js内容 ...

  7. 使用 docker compose 安装 tidb

    目标 : 单机上通过 Docker Compose 快速一键部署一套 TiDB 测试集群 前提条件: 1.centos版本在7.3 以上 2.安装git 3.安装docker Docker versi ...

  8. springboot+cfx实现webservice功能

    一.开发服务端 1.新建工程 cfx-webservice ,最终的完整工程如下: pom.xml如下: <?xml version="1.0" encoding=" ...

  9. java常用设计模式四:观察者模式

    1.定义 观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一主题对象.这个主题对象在状态发生变化时,会通知所有观察者对象,使它们能够自动更新自己.观察者模式又叫发布-订阅(Publis ...

  10. Linux中的sleep、usleep、nanosleep、poll和select

    在进行Linux C/C++编程时,可调用的sleep函数有好多个,那么究竟应当调用哪一个了?下表列出了这几个函数间的异同点,可作为参考: 性质 精准度 线程安全 信号安全 sleep libc库函数 ...