一道不是十分水的\(dp\).

首先我们考虑\(dp\)方程的构造。起初我定义的状态是\(dp_{i,j}\)表示前\(i\)个格子,总共跳了\(j\)次的最大得分。但事实上它并不可以转移,因为我们不知道新的一轮操作从之间的哪个格子算起。

那么状态转移方程就出来了,我们把第一维改成本次跳到第\(i\)个格子上,包括本次在内总共跳了\(j\)次的最大得分,那么转移的时候,由于本次一定要跳到\(i\)上(如状态中所定义),所以不用分类讨论。方程就是:$$dp_{i,j}=\max{dp_{k,j-1}-\rm{Sum(k + 1, i-1)}}+A_i$$

其中\(0 \leq k < i(\text{不能两次跳到同一个格子上所以右区间为开区间})\),\(\rm{Sum(l,r)}\mathcal{=\sum\limits_{i=l}^{r}A_i}\)

代码大概是这样\((\rm{30pts})\):

#include <cstdio>
#include <iostream> #define MAXN 5010 using namespace std ; int i, j, k, Ans ;
int N, T, S[MAXN], dp[MAXN][MAXN], A[MAXN], B[MAXN] ; int main(){
cin >> N >> T ;
for (i = 1 ; i <= N ; ++ i)
scanf("%d", &A[i]), S[i] = S[i - 1] + A[i] ;
for (i = 1 ; i <= N ; ++ i) scanf("%d", &B[i]) ;
for (i = 0 ; i <= N ; ++ i)
for (j = 0 ; j <= N ; ++ j)
dp[i][j] = -192608170 ; dp[0][0] = 0 ;
for (i = 1 ; i <= N ; ++ i)
for (j = 1 ; j <= i ; ++ j){
for (k = 0 ; k < i ; ++ k)
dp[i][j] = max(dp[i][j], dp[k][j - 1] - S[i - 1] + S[k] + A[i]) ;
if (j % T == 0) dp[i][j] += B[i] ; Ans = max(Ans, dp[i][j]) ;
}
cout << Ans << endl ; return 0 ;
}

但是我们发现,这个复杂度是\(\Theta(n^3)\)的,于是选择优化。\(dp\)优化的老套路就是:

  • 优化状态维数

  • 优化转移复杂度

而此处我们不可以优化状态了,所以考虑优化转移复杂度。转移的复杂度是\(\Theta(n)\)的,我们考虑可否\(\Theta(1)\)转移,最终使得总复杂度为\(\Theta(n^2) \times \Theta(1) \leq O(n^2)\)

从状态转移方程入手,我们发现有关于\(k\)是满足单调性的。所以不妨我们记录一下每次的\(k\),即把\(dp[k][j-1]+ S[k]\)中的最大值存储下来,从而达到\(\Theta(1)\)转移的目的。

此处笔者使用了比较玄学的存储方式……类似刷表……当然这个地方有多种的优化方式啦~

完整版\(code\)(700~800ms):

#include <cstdio>
#include <iostream> #define MAXN 5010 using namespace std ; int i, j, k, p, Ans ;
int N, T, Last[MAXN], S[MAXN], dp[MAXN][MAXN], A[MAXN], B[MAXN] ; int main(){
cin >> N >> T ;
for (i = 1 ; i <= N ; ++ i)
scanf("%d", &A[i]), S[i] = S[i - 1] + A[i] ;
for (i = 1 ; i <= N ; ++ i) scanf("%d", &B[i]) ;
for (i = 0 ; i <= N ; ++ i)
for (j = 0 ; j <= N ; ++ j)
dp[i][j] = -192608170 ; dp[0][0] = 0 ;
for (j = 1 ; j <= N ; ++ j){
for (i = j ; i <= N ; ++ i){
p = Last[i - j], Last[i - j] = 0 ;
dp[i][j] = p - S[i - 1] + A[i] ;
if (j % T == 0) dp[i][j] += B[i] ; Ans = max(Ans, dp[i][j]) ;
Last[i - j] = max(Last[i - j - 1], dp[i][j] + S[i]) ;
}
}
cout << Ans << endl ; return 0 ;
}

毒瘤常数优化后被艹到龟速的版本(1100ms +):

#include <cstdio>
#include <cstring>
#include <iostream> #define max Max
#define MAXN 5010
#define Inf 19260817 using namespace std ; int i, j, k, p, t, Ans ;
int N, T, Last[MAXN], S[MAXN], dp[MAXN][MAXN], A[MAXN], B[MAXN] ; inline int Max(int a, int b){
return a & ((b - a) >> 31) | b & ( ~ (b - a) >> 31) ;
}
inline int qr(){
int res = 0 ; char c = getchar() ;
while (!isdigit(c)) c = getchar() ;
while (isdigit(c)) res = (res << 1) + (res << 3) + c - 48, c = getchar() ;
return res ;
}
int main(){
cin >> N >> T ;
for (i = 0 ; i <= N ; ++ i)
for (j = 0 ; j <= N ; ++ j)
dp[i][j] = -Inf ; dp[0][0] = 0 ;
for (i = 1 ; i <= N ; ++ i)
A[i] = qr(), S[i] = S[i - 1] + A[i] ;
for (i = 1 ; i <= N ; ++ i) B[i] = qr() ;
for (j = 1 ; j <= N ; ++ j){
for (i = j ; i <= N ; ++ i){
t = i - j, p = Last[t], dp[i][j] = p - S[i - 1] + A[i] ;
if (!(j % T)) dp[i][j] += B[i] ; Ans = max(Ans, dp[i][j]), Last[t] = max(Last[t - 1], dp[i][j] + S[i]) ;
}
}
cout << Ans << endl ; return 0 ;
}

唉,先有常数后有天,反向优化\(Sun\)神仙啊

随机推荐

  1. mysql小试题

    1. 用户登录日志表 xes_user_login_logs 如下: (1) 检索登录超过两次的用户ID(sql语句) select user_id from vvt_ceshi group by u ...

  2. div阴影

    .box-shadow{ //Firefox4.0- -moz-box-shadow:投影方式 X轴偏移量 Y轴偏移量阴影模糊半径 阴影扩展半径 阴影颜色; //Safariand Google ch ...

  3. 使用ThinkPHP实现分页功能

    前几篇(上传,缩略图,验证码,自动验证表单)文章介绍的功能实现都是基于ThinkPHP框架封装好的类进行实现的,所以这次自己写一个分页类在框架中使用. 首先在根目录建一个Tools文件夹,在Tools ...

  4. BZOJ3601 一个人的数论

    Description 定义 \[ f_k(n)=\sum_{\substack{1\leq i\leq n\\gcd(i,n)=1}}i^k \] 给出\(n=\prod_{i=1}^w p_i^{ ...

  5. 【读书笔记】iOS-网络-Cookie

    Cookie是HTTP协议在首个版本之后加入的一个重要组件.它向服务器提供了追踪会话状态的能力,同时又无须维持客户端与服务器之间的连接.在浏览器客户端,Cookie值是由服务器通过请求提供的,,然后被 ...

  6. KOTLIN-1(常用网址)

    ---恢复内容开始--- 1.官网:http://kotlinlang.org/ 2.官方文档:https://kotlinlang.org/docs/reference 3.kotlin源码:htt ...

  7. 稳聘App设计图分享

    摘要||潜心学习,无限开源,我是鸟窝,一只憨厚的鸟,联系我加微信:jkxx123321 很早期就想筹划上线一款招聘类App,一拖再拖,先做还没有上线. 下面的设计原图,为我UI徒弟所做,在此,表示万分 ...

  8. LeetCode题解之Palindromic Substrings

    1.问题描述 2.问题分析 对于每一个字符,以该字符为中心计算回文个数. 3.代码 int countSubstrings(string s) { ; ) ; ; i < s.size(); i ...

  9. Ubuntu安装ffmpeg

    二.linux源码安装: 如下: 下载 源码包:http://ffmpeg.org/releases/ffmpeg-3.3.tar.bz2 1.从网络上下载到的源码包,然后解压到指目录 假设下载目录 ...

  10. 结合 Redis 实现同步锁

    1.技术方案 1.1.redis的基本命令 1)SETNX命令(SET if Not eXists) 语法:SETNX key value 功能:当且仅当 key 不存在,将 key 的值设为 val ...