[BZOJ2124]等差子序列/[CF452F]Permutation

题目大意:

一个\(1\sim n\)的排列\(A_{1\sim n}\),询问是否存在\(i,j(i<j)\),使得\(A_i<A_j\)且\(\frac{A_i+A_j}2\)在\(i,j\)之间出现。

BZOJ上的数据范围:\(n\le10000\);

CF上的数据范围:\(n\le3\times10^5\)。

思路:

从左到右枚举每一个数,用两个布尔数组\(b_0,b_1\)分别维护数值为\(i\)的数是否在当前数的左边、右边出现。然后将与当前数差值相等的位置对应起来(如,当前\(A_i=3\)时,将\(b_{0,1}\)与\(b_{1,5}\)对应起来),看一下对应位置有没有都是\(1\)的,如果有,则说明存在。

使用bitset优化可以做到\(\mathcal O(\frac{n^2}{32})\),但还是过不了。

发现如果只用一个数组\(b\)维护左边出现过的数,那么对于当前位置\(i\),若以\(b_{A_i}\)为中心的极大字符串是不是回文串,说明一个在左边出现,一个在右边出现,那么一定存在解。而确定中心的回文串判定可以用树状数组维护哈希实现。

事件复杂度\(\mathcal O(n\log n)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=300001;
const unsigned base=13;
unsigned pwr[N];
int n;
class FenwickTree {
private:
unsigned val[N];
int lowbit(const int &x) const {
return x&-x;
}
unsigned query(const int &p) const {
unsigned ret=0;
for(register int i=p;i;i-=lowbit(i)) {
ret+=val[i]*pwr[p-i];
}
return ret;
}
public:
void modify(const int &p) {
for(register int i=p;i<=n;i+=lowbit(i)) {
val[i]+=pwr[i-p];
}
}
unsigned query(const int &l,const int &r) const {
return query(r)-query(l-1)*pwr[r-l+1];
}
};
FenwickTree t[2];
int main() {
n=getint();
for(register int i=pwr[0]=1;i<=n;i++) {
pwr[i]=pwr[i-1]*base;
}
bool ans=false;
for(register int i=1;i<=n;i++) {
const int x=getint();
const int len=std::min(x-1,n-x);
ans|=t[0].query(x-len,x-1)!=t[1].query(n-x-len+1,n-x);
t[0].modify(x);
t[1].modify(n-x+1);
}
puts(ans?"YES":"NO");
return 0;
}

[BZOJ2124]等差子序列/[CF452F]Permutation的更多相关文章

  1. bzoj2124: 等差子序列线段树+hash

    bzoj2124: 等差子序列线段树+hash 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2124 思路 找大于3的等差数列其实就是找等于 ...

  2. BZOJ2124 等差子序列(树状数组+哈希)

    容易想到一种暴力的做法:枚举中间的位置,设该位置权值为x,如果其两边存在权值关于x对称即合法. 问题是如何快速寻找这个东西是否存在.考虑仅将该位置左边出现的权值标1.那么若在值域上若关于x对称的两权值 ...

  3. [bzoj2124]等差子序列_线段树_hash

    等差子序列 bzoj-2124 题目大意:给定一个1~n的排列,问是否存在3个及以上的位置上的数构成连续的等差子序列. 注释:$1\le n\le 10^4$. 想法:这题就相当于是否存在3个数i,j ...

  4. [bzoj2124]等差子序列(hash+树状数组)

    我又来更博啦     2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 941  Solved: 348[Submit][Statu ...

  5. bzoj2124 等差子序列(hash+线段树)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 719  Solved: 261[Submit][Status][Discuss] ...

  6. BZOJ2124:等差子序列(线段树,hash)

    Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3), 使得A ...

  7. BZOJ2124: 等差子序列(树状数组&hash -> bitset 求是否存在长度为3的等差数列)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 2354  Solved: 826[Submit][Status][Discuss ...

  8. BZOJ2124: 等差子序列

    题意:给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len>=3),使得 Ap1,Ap ...

  9. [bzoj2124]等差子序列——线段树+字符串哈希

    题目大意 给一个1到N的排列\(A_i\),询问是否存在\(p_i\),\(i>=3\),使得\(A_{p_1}, A_{p_2}, ... ,A_{p_len}\)是一个等差序列. 题解 显然 ...

随机推荐

  1. Codeforces 906 D. Power Tower

    http://codeforces.com/contest/906/problem/D 欧拉降幂 #include<cstdio> #include<iostream> usi ...

  2. c#的事件用法——实现下载时发生的事件

    //下载时发出的事件 using System; using System.Collections.Generic; using System.Linq; using System.Text; usi ...

  3. 利用JS实现图片的缓存

    web页面使用HTML的<img>元素来嵌入图片,和所有HTML元素一样,<img>元素也是可以通过脚本来操控的(设置元素的src属性,将其指向一个新的URL会导致浏览器载入并 ...

  4. 20145234黄斐《Java程序设计》第八周

    教材学习内容总结 第十四章-NIO与NIO2 NIO与IO的区别 NIO Channel继承框架 想要取得Channel的操作对象,可以使用Channels类,它定义了静态方法newChannel() ...

  5. 20155321 2016-2017-2 《Java程序设计》第五周学习总结

    20155321 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 第八章 异常处理 Java提供特有的语句进行处理 try { 需要被检测的代码; } cat ...

  6. 20155227 2016-2017-2 《Java程序设计》第五周学习总结

    20155227 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 语法与继承架构 使用try...catch JVM会尝试执行try区块中的程序代码,如果发生 ...

  7. SQLSTATE[42000]

    SQLSTATE[42000]: Syntax error or access violation: 1140 Mixing of GROUP columns (MIN(),MAX(),COUNT() ...

  8. [译]How To Use the Linux Auditing System on CentOS 7

    本文是How To Use the Linux Auditing System on CentOS 7的中文版,翻译不到之处,还请指出和多多包涵.本文并不会完全遵从原文的一些格式,而是加入自己学习的理 ...

  9. string替换所有指定字符串(C++)

    C++的string提供了replace方法来实现字符串的替换,但是对于将字符串中某个字符串全部替换这个功能,string并没有实现,我们今天来做的就是这件事. 首先明白一个概念,即string替换所 ...

  10. poj2056

    寻找向左凸的地方,每个左凸能让S数量-2.上边或下边如果是半个左凸的话则各对应-1 #include <cstdio> #include <cstring> #include ...