一、概述

UDP和TCP是网络通讯常用的两个传输协议,C#一般可以通过Socket来实现UDP和TCP通讯,由于.NET框架通过UdpClient、TcpListener 、TcpClient这几个类对Socket进行了封装,使其使用更加方便, 本文就通过这几个封装过的类讲解一下相关应用。

二、基本应用:连接、发送、接收

服务端建立侦听并等待连接:

TcpListener tcpListener = new TcpListener(IPAddress.Parse("127.0.0.1"), );
tcpListener.Start();
if (tcpListener.Pending())
{
TcpClient client = tcpListener.AcceptTcpClient();
Console.WriteLine("Connected");
}

服务端是通过AcceptTcpClient方法获得TcpClient对象,而客户端是直接创建TcpClient对象。

TcpClient tcpClient = new TcpClient();
tcpClient.Connect("127.0.0.1", );

发送数据TcpClient对象创建后,发送接收都通过TcpClient对象完成。

发送数据:

                TcpClient tcpClient = new TcpClient();
tcpClient.Connect("127.0.0.1", );
NetworkStream netStream = tcpClient.GetStream(); int Len = ;
byte[] datas = new byte[Len]; netStream.Write(datas, , Len); netStream.Close();
tcpClient.Close();

接收数据:

TcpClient client = tcpListener.AcceptTcpClient();
Console.WriteLine("Connected"); NetworkStream stream = client.GetStream();
var remote = client.Client.RemoteEndPoint; byte[] data = new byte[];
while (true)
{
if (stream.DataAvailable)
{
int len = stream.Read(data, , );
Console.WriteLine($"From:{remote}:Received ({len})");
}
Thread.Sleep();
}

三、 粘包问题

和UDP不太一样,TCP连接不会丢包,但存在粘包问题。(严格来说粘包这个说法是不严谨的,因为TCP通讯是基于流的,没有包的概念,包只是使用者自己的理解。) 下面分析一下粘包产生的原因及解决办法。

TCP数据通讯是基于流来实现的,类似一个队列,当有数据发送过来时,操作系统就会把发送过来的数据依次放到这个队列中,对发送者而言,数据是一片一片发送的,所以自然会认为存在数据包的概念,但对于接收者而言,如果没有及时去取这些数据,这些数据依次存放在队列中,彼此之间并无明显间隔,自然就粘包了。

还有一种情况粘包是发送端造成的,有时我们调用发送代码时,操作系统可能并不会立即发送,而是放到缓存区,当缓存区达到一定数量时才真正发送。

要解决粘包问题,大致有以下几个方案。

1、 约定数据长度,发送端的数据都是指定长度,比如1024;接收端取数据时也取同样长度,不够长度就等待,保证取到的数据和发送端一致;

2、 接收端取数据的频率远大于发送端,比如发送端每1秒发送一段数据,接收端每0.1秒去取一次数据,这样基本可以保证数据不会粘起来;

以上两个方案都要求发送端需要立即发送,不可缓存数据。而且这两种方案都有缺陷:首先,第一种方案:如果要包大小一致的话,如果约定的包比较大,肯定有较多数据冗余,浪费网络资源,如果包较小,连接就比较频繁,效率不高。

其次,第二种方案:这个方案只能在理想环境下可以实现,当服务端遭遇一段时间的计算压力时可能会出现意外,不能完全保证。

比较完善的解决方案就是对接收到的数据进行预处理:首先通过定义特殊的字符组合作为包头和包尾,如果传输ASCII字符,可以用0x02表示开始(STX),用0x03表示结束(ETX),比如:STX ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ETX (二进制数据: 02 48 65 6C 6C 6F 03)。如果数据较长可以在包头留出固定位置存放包长度, 如:

02 00 05 48 65 6C 6C 6F 03

其中02 05 就表示正文长度为5个字节,可以进行校验。

虽然第三种方案比较严谨,但相对复杂,在传输比较可靠、应用比较简单的场景下,也可以采用前面两种解决方案。

四、 一个完整的例程

服务端:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;
using System.Threading.Tasks; namespace TCPServer
{
class Program
{
static void Main(string[] args)
{
TcpListener tcpListener = new TcpListener(IPAddress.Parse("127.0.0.1"), );
tcpListener.Start(); while (true)
{
if (tcpListener.Pending())
{
TcpClient client = tcpListener.AcceptTcpClient();
Console.WriteLine("Connected"); Task.Run(() =>
{
NetworkStream stream = client.GetStream();
var remote = client.Client.RemoteEndPoint; while (true)
{
if (stream.DataAvailable)
{
byte[] data = new byte[];
int len = stream.Read(data, , );
string Name = Encoding.UTF8.GetString(data,,len);
var senddata = Encoding.UTF8.GetBytes("Hello:" + Name);
stream.Write(senddata, , senddata.Length);
} if (!client.IsOnline())
{
Console.WriteLine("Connect Closed.");
break;
} Thread.Sleep();
}
});
} Thread.Sleep();
}
}
} public static class TcpClientEx
{
public static bool IsOnline(this TcpClient client)
{
return !((client.Client.Poll(, SelectMode.SelectRead) && (client.Client.Available == )) || !client.Client.Connected);
}
}
}

客户端:

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Net.Sockets;
using System.Text;
using System.Threading;
using System.Threading.Tasks; namespace TCP_Clent
{
class Program
{
static void Main(string[] args)
{
ThreadPool.SetMinThreads(, );
ThreadPool.SetMaxThreads(, ); Parallel.For(, , x =>
{
SendData("Tom");
}); Console.WriteLine("All Completed!");
Console.ReadKey();
} private static void SendData(string Name)
{
Task.Run(() =>
{
Console.WriteLine("Start");
TcpClient tcpClient = new TcpClient();
tcpClient.Connect("127.0.0.1", );
Console.WriteLine("Connected");
NetworkStream netStream = tcpClient.GetStream(); Task.Run(() =>
{
Thread.Sleep();
while (true)
{
if (!tcpClient.Client.Connected)
{
break;
} if (netStream == null)
{
break;
} try
{
if (netStream.DataAvailable)
{
byte[] data = new byte[];
int len = netStream.Read(data, , );
var message = Encoding.UTF8.GetString(data, , len);
Console.WriteLine(message);
}
}
catch
{
break;
} Thread.Sleep();
}
}); for (int i = ; i < ; i++)
{
byte[] datas = Encoding.UTF8.GetBytes(Name);
int Len = datas.Length;
netStream.Write(datas, , Len);
Thread.Sleep();
} netStream.Close();
netStream = null;
tcpClient.Close(); Console.WriteLine("Completed");
});
}
}
}

传送门:

C#网络编程入门系列包括三篇文章:

(一)C#网络编程入门之UDP

(二)C#网络编程入门之TCP

(三)C#网络编程入门之HTTP

C#网络编程入门之TCP的更多相关文章

  1. C#网络编程入门之UDP

    目录: C#网络编程入门系列包括三篇文章: (一)C#网络编程入门之UDP (二)C#网络编程入门之TCP (三)C#网络编程入门之HTTP 一.概述 UDP和TCP是网络通讯常用的两个传输协议,C# ...

  2. 脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手

    .引言 网络编程中TCP协议的三次握手和四次挥手的问题,在面试中是最为常见的知识点之一.很多读者都知道“三次”和“四次”,但是如果问深入一点,他们往往都无法作出准确回答. 本篇文章尝试使用动画图片的方 ...

  3. [转帖]脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手

    脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手   http://www.52im.net/thread-1729-1-1.html     1.引言 网络编程中TCP协议的三次握手和 ...

  4. 脑残式网络编程入门(六):什么是公网IP和内网IP?NAT转换又是什么鬼?

    本文引用了“帅地”发表于公众号苦逼的码农的技术分享. 1.引言 搞网络通信应用开发的程序员,可能会经常听到外网IP(即互联网IP地址)和内网IP(即局域网IP地址),但他们的区别是什么?又有什么关系呢 ...

  5. 脑残式网络编程入门(五):每天都在用的Ping命令,它到底是什么?

    本文引用了公众号纯洁的微笑作者奎哥的技术文章,感谢原作者的分享. 1.前言   老于网络编程熟手来说,在测试和部署网络通信应用(比如IM聊天.实时音视频等)时,如果发现网络连接超时,第一时间想到的就是 ...

  6. 脑残式网络编程入门(四):快速理解HTTP/2的服务器推送(Server Push)

    本文原作者阮一峰,作者博客:ruanyifeng.com. 1.前言 新一代HTTP/2 协议的主要目的是为了提高网页性能(有关HTTP/2的介绍,请见<从HTTP/0.9到HTTP/2:一文读 ...

  7. 脑残式网络编程入门(三):HTTP协议必知必会的一些知识

    本文原作者:“竹千代”,原文由“玉刚说”写作平台提供写作赞助,原文版权归“玉刚说”微信公众号所有,即时通讯网收录时有改动. 1.前言 无论是即时通讯应用还是传统的信息系统,Http协议都是我们最常打交 ...

  8. 脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?

    1.引言 本文接上篇<脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手>,继续脑残式的网络编程知识学习 ^_^. 套接字socket是大多数程序员都非常熟悉的概念,它是计算机 ...

  9. [转帖]脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?

    脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?     http://www.52im.net/thread-1732-1-1.html   1.引言 本文接上篇<脑残式网 ...

随机推荐

  1. CUDA编程学习相关

    1. CUDA编程之快速入门:https://www.cnblogs.com/skyfsm/p/9673960.html 2. CUDA编程入门极简教程:https://blog.csdn.net/x ...

  2. 9) drf JWT 认证 签发与校验token 多方式登陆 自定义认证规则反爬 admin密文显示

    一 .认证方法比较 1.认证规则图 django 前后端不分离 csrf认证 drf 前后端分离 禁用csrf 2. 认证规则演变图 数据库session认证:低效 缓存认证:高效 jwt认证:高效 ...

  3. 内存淘汰机制——LRU与LFU

    内存淘汰机制之LRU与LFU LRU(Least Recently Used):淘汰 近期最不会访问的数据 LFU(Least Frequently Used):淘汰 最不经常使用(访问次数少) 所谓 ...

  4. F - Power Network POJ - 1459

    题目链接:https://vjudge.net/contest/299467#problem/F 这个是一个很简单的题目,但是读入很有意思,通过这个题目,我学会了一种新的读入方式. 一个旧的是(%d, ...

  5. JAVA设计模式之单例(singleton)

    一.饿汉式 /** * 饿汉式 */public class Singleton01 { private static final Singleton01 instance = new Singlet ...

  6. python学习之循环语句的使用

    循环语句主要有while和for循环两大类,接下来先看下while循环 1.while循环(python里没有do while循环语句) while 条件: 代码块 执行程序 2.for循环(可以取二 ...

  7. Python 记录日志文件

    1.打印到控制台 # -*- coding: UTF-8 -*- import logging def logFileTest(): logging.debug('This is debug') lo ...

  8. OpenCV 经纬法将鱼眼图像展开

    文章目录 前言 理论部分 鱼眼展开流程 鱼眼标准坐标计算 标准坐标系与球坐标的转换 代码实现 测试效果如下图 总结 this demo on github 前言 鱼眼镜头相比传统的镜头,视角更广,采集 ...

  9. .NET IoC模式依赖反转(DIP)、控制反转(Ioc)、依赖注入(DI)

    依赖倒置原则(DIP) 依赖倒置(Dependency Inversion Principle,缩写DIP)是面向对象六大基本原则之一.他是指一种特定的的解耦形式,使得高层次的模块不依赖低层次的模块的 ...

  10. 1018 Public Bike Management (30分) 思路分析 + 满分代码

    题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...