[算法]Miller-Robbin素数判定
一、实现原理
我们以前都是怎么判断素数的呢:
试除法: 若一个正整数N为合数,则存在一个能整除N的数k,其中\(2\leqslant k \leqslant \sqrt N\)。
具体实施如下:
inline int is_prime(int n){
if(n<2) return 0;
for(int i=2;i<=sqrt(n);i++){
if(n%i==0) return 0;
}
return 1;
}
这种方法的时间复杂度为\(O(\sqrt n)\)。
现在,我们希望更快地判断一个数是否为素数。
我们可以借助费马小定理来判断:
如果p是一个质数,而整数a不是p的倍数,则有
\]
Miller-Robbin素数判定就是基于上述定理实现的,如果我们随机枚举一个\(a\),且\(a\)满足费马小定理,那么\(p\)就是素数。所以Miller-Robbin素数判定是一种随机性算法。
需要注意的是,我们这样判断素数的方法实际上利用的是费马小定理的逆定理。不幸的是,费马小定理的逆定理并不是一个真命题。
- 存在\(a=2,p=341\)时满足费马小定理,而\(341=11*31\)却是合数
我们把像341这样的数称作伪素数。实际上,伪素数有无穷多组。
这意味着一次判断不足以保证我们的程序正确。当然,解决这个问题也十分简单。
我们只需要重复操作大约30次,便能将正确率提升到我们期待的水平。
另外,我们使用快速幂来计算\(a^{p-1}\)。总复杂度为\(O(logn)\)。
下面给出Miller-Robbin素数判定的模板:
int qpow(int a,int b,int mod){//快速幂
int res=1;
while(b){
if(b&1) res=(res%mod*a)%mod;
a=(a%mod)*a%mod;
b>>=1;
}
return res;
}
bool query_prime(int x){
if(x==2)return true;
if(x==1)return false;
for(int i=1;i<=30;i++){
int base=rand()%(x-1)+1;//随机枚举a
if(qpow(base,x-1,x)!=1) return false;//计算a^(p-1)%p的值
}
return true;
}
二、应用
判断一个正整数是否为素数
#include<bits/stdc++.h>
#define int long long
using namespace std;
inline int qpow(int a,int b,int mod){//快速幂
int res=1;
while(b){
if(b&1) res=(res%mod*a)%mod;
b>>=1;
a=(a%mod)*a%mod;
}
return res;
}
inline int miller_robbin(int num){//核心代码
for(int i=1;i<=30;i++){
int base=rand()%(num-1)+1;
if(qpow(base,num-1,num)!=1) return 0;
}
return 1;
}
signed main(){
int num;
scanf("%d",&num);
if(num==1){
printf("NO");
return 0;
}
miller_robbin(num)?printf("YES\n"):printf("NO\n");
return 0;
}
附赠一道水题:(主要是练习素数判定)
AT1476 素数判定
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll qpow(ll a,ll b,ll mod){
ll res=1;
while(b){
if(b&1)res=(res%mod*a)%mod;
a=(a%mod)*a%mod;
b>>=1;
}
return res;
}
bool query_prime(ll x)
{
if(x==2)return true;
if(x==1)return false;
for(int i=1;i<=30;i++){
ll base=rand()%(x-1)+1;
if(qpow(base,x-1,x)!=1)return false;
}
return true;
}
int main()
{
srand(time(NULL));
ll num;
scanf("%lld",&num);
if(query_prime(num)||(num%2!=0&&num%3!=0&&num%5!=0&&num!=1))printf("Prime\n");
else printf("Not Prime\n");
return 0;
}
三、小结
使用Miller-Robbin素数判定,我们可以将复杂度降低至\(O(logn)\)级别(常数阶可以被忽略)。这样比原来的方法会快很多。
[算法]Miller-Robbin素数判定的更多相关文章
- Miller-Rabin算法 codevs 1702 素数判定 2
转载自:http://www.dxmtb.com/blog/miller-rabbin/ 普通的素数测试我们有O(√ n)的试除算法.事实上,我们有O(slog³n)的算法. 定理一:假如p是质数,且 ...
- HDU2138 素数判定
HDU2138 给定N个32位大于等于2的正整数 输出其中素数的个数 用Miller Rabin 素数判定法 效率很高 数学证明比较复杂,略过, 会使用这个接口即可. #include<iost ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- 数学#素数判定Miller_Rabin+大数因数分解Pollard_rho算法 POJ 1811&2429
素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: h ...
- 10^9以上素数判定,Miller_Rabin算法
#include<iostream> #include<cstdio> #include<ctime> #include<string.h> #incl ...
- 公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法!
公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法! 先存档再说,以后实验报告还得打印上交. Miller-Rabin大素数判定对于学算法的人来讲不是什么难事,主要了解其原理. 先来灌 ...
- Miller_Rabin()算法素数判定 +ollard_rho 算法进行质因数分解
//****************************************************************// Miller_Rabin 算法进行素数测试//速度快,而且可以 ...
- FZU 1649 Prime number or not米勒拉宾大素数判定方法。
C - Prime number or not Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & % ...
- algorithm@ 大素数判定和大整数质因数分解
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #in ...
随机推荐
- Swift:字符串(String)分割之Substring优雅转换
认识Substring类型 这是一个全新的类型,看类名像是String的子类,但是大家千万别被误导了,Substring并不是String的子类,这是两个不同的类型,但是它们都继承了StringPro ...
- python浅学【网络服务中间件】之Redis
一.关于NoSQL: NoSQL(NoSQL = Not Only SQL ),"不仅仅是SQL". 相比MySQL等关系型数据库,NoSQL为非关系型的数据存储 Nosql中比较 ...
- EFCore DbContext 报SqlException: Incorrect syntax near 'OFFSET'.
protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder) { optionsBuilder.UseSq ...
- Docker镜像拉取慢的解决方法
镜像加速器配置: 下文配置引用于阿里云说明文档:https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors 1. 安装/升级Docker客户 ...
- Python批量修改Excel中的文件内容
import osimport xlrdfrom xlutils.copy import copydef base_dir(filename=None): return os.path.join ...
- python逐行读取文本
一.使用open打开文件后一定要记得调用文件对象的close()方法.比如可以用try/finally语句来确保最后能关闭文件. 二.需要导入import os 三.下面是逐行读取文件内容的三种方法: ...
- java并发安全
本次内容主要线程的安全性.死锁相关知识点. 1.什么是线程安全性 1.1 线程安全定义 前面使用8个篇幅讲到了Java并发编程的知识,那么我们有没有想过什么是线程的安全性?在<Java并发编程 ...
- gold 波浪
- 学习笔记-EL
仅作为学习过程中笔记作用,若有不正确的地方欢迎指正 目标 理解El的作用,熟练使用EL EL表达式与Jsp表达式对比来记 EL表达式的概念,作用,语法 Jsp作用主要是用来实现动态网页的,而动态网页中 ...
- 面向对象编程基础(java)
面向对象编程基础 1.1 面向对象概述 在程序开发初期,大家使用的是结构化开发语言,也就是面向过程(opp),但随着市场需求剧增,软件的规模也越来越大,结构化语言的弊端也暴露出来. 开发周期无休止的拖 ...