谷歌2019 学术指标发榜:CVPR首次进入Top 10,何恺明论文引用最高!
【导读】今天,谷歌发布了2019最新版学术指标,对收录的会议和期刊的影响力进行排名。AI类的多个顶会进入榜单Top 100,CVPR更是进入前10,而何恺明的“深度残差网络”单篇引用次数高达25256次,引用量最高!
今天,谷歌正式发布了2019年版的学术指标(Scholar Metrics)。
本次发布涵盖2014-2018年发表的文章,并包括了截至2019年7月在谷歌学术中被索引的所有文章的引用 。
最新版的谷歌学术指标有以下亮点:
两大自然科学顶刊Nature和Science分别排名第一和第三;
计算机视觉顶会CVPR首次进入综合榜单Top 10;
一共有六个人工智能类顶会进入综合榜单Top 100;
多篇人工智能论文出现在Nature的高引论文中;
何恺明的“深度残差学习”论文是最近5年CV类引用次数最多的论文,被引25256次
谷歌学术指标为作者提供了一种简便的方法,让学者们可以快速评估学术出版物最近文章的影响力。
学术指标的收录包括遵循谷歌学术收录指南的网络期刊,并选择了工程和计算机科学的主要会议。2014-2018年间论文少于100篇的出版物,或2014-2018年间未被引用的出版物没有被收录在内。
在谷歌的官方网站上,你可以用特定的类型关键词进行搜索,比如 Ceramic Engineering、 High Energy & Nuclear Physics 或者 Film ;或者更宽泛的领域,比如 Engineering & Computer Science 或者 Humanities, Literature & Arts 。
在网站上,你可以看到根据 5 年高引用(h5指数)和 h5中位数指标排名的前 20 出版物。你也可以看到不同语种排名前 100 的出版物,比如中文、西班牙语和葡萄牙语。每一个出版物,你可以点击 h5-index 查看该出版物被引用最多的论文。
学术指标包括超出按类别和按语言列出的大量出版物。你可以通过在搜索框中输入关键词来找到这些内容,例如[security]、[soil]、[medicina]。
综合榜单Top 20:CVPR首次进入前10名,NeurIPS第27
谷歌学术把英文类出版物分为以下几大类:
商业、经济和管理
化学和材料科学
工程和计算机科学
健康和医学科学
人文、文学和艺术
生命科学和地球科学
物理和数学
社会科学
综合排名Top 20
首先来看看综合排名。
英文类出版物,网站列出了 TOP100 的名单,其中 Nature 排名第一,H5 指数 368,H5 中位数 546。
另一科学顶刊Science排名第三,H5指数338,H5中位数511。
特别值得注意的是,计算机视觉的顶会CVPR排名进入了Top 10。去年CVPR的排名是第20,一跃进步了10名。
此外,AI 领域另一个备受关注的会议 NeurIPS,也在综合排名中位列第 27(去年是第54)。
其他人工智能类会议,ICLR排名第42,ECCV排名第56,ICML排名第59,ICCV排名第71。
此外,IEEE系期刊中《IEEE模式分析与机器智能学报》排名第76,《IEEE工业电子学报》排名第81,《IEEE电力电子学报》排名第98。
再来看单篇论文的被引次数:
其中,Nature杂志今年来被引用次数最高的Top 5论文中,人工智能相关论文占了3篇,分别是LeCun、Bengio和Hinton2015年发表的“Deep Learning”综述论文,DeepMind的“Q-network”深度强化学习论文,以及同样来自DeepMind的“通过深度神经网络和树搜索掌握围棋游戏”论文。
工程与计算机领域Top 20
工程与计算机类的Top 20
工程和计算机科学类目下分为 56 个子项目,其中包括人工智能、计算机语言学、计算机视觉与模式识别、人机交互、Robotics等。下文将对这些领域进行详细介绍。
人工智能 TOP 20,多个顶会上榜
人工智能Top 20
一眼看去,人工智能分类(不包含CV、NLP等子领域)的TOP 20有多个是顶会,包括前面提到进入综合榜单TOP 100的NeurIPS、ICLR和ICML。
此外,AAAI虽然没有进入总榜Top 100,但在人工智能类排名第7。
让我们来发表在人工智能类会议中被引用次数最高的论文:
1. Adam: A Method for Stochastic Optimization.
DP Kingma, J Ba
ICLR
引用次数:25240
2. Very Deep Convolutional Networks for Large-Scale Image Recognition.
K Simonyan, A Zisserman
ICLR
引用次数:24554
3. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.
S Ioffe, C Szegedy
ICML, 448-456
引用次数:11293
4. Faster R-CNN: towards real-time object detection with region proposal networks
S Ren, K He, R Girshick, J Sun Proceedings of the 28th International Conference on Neural Information …
引用次数:10517
5. Generative adversarial nets
IJ Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, ...
Proceedings of the 27th International Conference on Neural Information …
引用次数:10175
可以看到,Adam随机优化方法以25240次引用排名第一,何恺明大神的Faster R-CNN以10517次引用进入前5,比Goodfellow的生成对抗网络论文略高。
计算机视觉与模式识别类 TOP 20,何恺明大神单篇引用最高
在计算机视觉与模式识别领域,三大视觉顶会CVPR、ECCV和ICCV分列前三。
第4和第5则分别是IEEE系的两本会刊:《IEEE模式分析与机器智能学报》和《IEEE图像处理学报》,两者h5指数均超过100.
接下来是计算机视觉与模式识别类引用最高的论文:
1. Deep Residual Learning for Image Recognition
K He, X Zhang, S Ren, J Sun
Proceedings of the IEEE Conference on Computer Vision and Pattern …
引用次数:25256
2. Going Deeper With Convolutions
C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, ...
Proceedings of the IEEE Conference on Computer Vision and Pattern …
引用次数:14424
3. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
S Ren, K He, R Girshick, J Sun
IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (6), 1137-1149
引用次数:10517
4. Fully Convolutional Networks for Semantic Segmentation
J Long, E Shelhamer, T Darrell
Proceedings of the IEEE Conference on Computer Vision and Pattern …
引用次数:10153
5. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
R Girshick, J Donahue, T Darrell, J Malik
Proceedings of the IEEE Conference on Computer Vision and Pattern …
引用次数:8960
这个类别中,何恺明的“深度残差网络”以25256次引用排名第一!(由于被IEEE计算机视觉与模式识别论文集收录,Faster R-CNN出现了两次。)
计算机语言学 TOP20,三大NLP顶会分列前三
在自然语言处理(Google scholar 中的分类是 Computational Linguistics)领域,不出意外,排名前三的是三大NLP顶会:ACL、EMNLP和NAACL。
接下来是计算语言学类引用最高的论文:
1. Glove: Global Vectors for Word Representation
J Pennington, R Socher, C Manning
Proceedings of the 2014 Conference on Empirical Methods in Natural Language …
引用次数:8358
2. The Stanford CoreNLP Natural Language Processing Toolkit.
CD Manning, M Surdeanu, J Bauer, JR Finkel, S Bethard, D McClosky
ACL (System Demonstrations), 55-60
引用次数:5618
3. Convolutional Neural Networks for Sentence Classification
Y Kim
Proceedings of the 2014 Conference on Empirical Methods in Natural Language …
引用次数:4551
4. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation
K Cho, B van Merrienboer, C Gulcehre, D Bahdanau, F Bougares, ...
Proceedings of the 2014 Conference on Empirical Methods in Natural Language …
引用次数:3629
5. A Convolutional Neural Network for Modelling Sentences
N Kalchbrenner, E Grefenstette, P Blunsom
Proceedings of the 52nd Annual Meeting of the Association for Computational …
引用次数:1838
人机交互和机器人学TOP 20
最后,我们分别看一下人机交互和机器人学领域的Top 20顶刊/顶会:
人机交互类Top 20
机器人类Top 20
h5 指数是指在过去整整 5 年中所发表文章的 h 指数。h 指在 2014-2018 年间发表的 h 篇文章每篇至少都被引用过 h 次的最大值。
出版物的 h5 中位数,是指出版物的 h5 指数所涵盖的所有文章获得的引用次数的中位值。
想了解更多高影响力期刊和论文,请点击阅读原文到官网查看。
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
谷歌2019 学术指标发榜:CVPR首次进入Top 10,何恺明论文引用最高!的更多相关文章
- 2019最好用的自动化测试工具Top 10,果断收藏!
经常有人在公众号留言或是后台问我,做自动化测试用哪个工具好,或是学哪门编程语言好呢? 这个时候总是无奈的说: 你应该学习Python 或是Java. 你应该掌握Selenium. 又或者你需要学会jm ...
- 2019建模美赛B题(派送无人机)M奖论文
昨天上午出了建模美赛的结果,我们小组获得的是M奖,感觉挺开心的.我一直觉得拿O奖那种是个概率事件,需要天时地利人和的各种因素都合适才行,所以看到自己是M奖,感觉自己的能力已经得到了认可就很满意了.今天 ...
- Python语言系列-10-数据库
MySQL 基础环境准备 readme.txt 作者:Alnk(李成果) 版本:v1.0 安装mysql数据库 略 创建student库 # mysql> create database stu ...
- 自动驾驶研究回顾:CVPR 2019摘要
我们相信开发自动驾驶技术是我们这个时代最大的工程挑战之一,行业和研究团体之间的合作将扮演重要角色.由于这个原因,我们一直在通过参加学术会议,以及最近推出的自动驾驶数据集和基于语义地图的3D对象检测的K ...
- 谷歌(Google)学术镜像,谷歌镜像
谷歌(Google)学术镜像,谷歌镜像 2019-09-03 15:32:26 Hinton-wu 阅读数 6743 文章标签: 谷歌google学术镜像 更多 分类专栏: 其他 版权声明:本文为 ...
- 使用Selenium从IEEE与谷歌学术批量爬取BibTex文献引用
搞科研的小伙伴总是会被期刊严苛的引用文献格式搞的很头疼.虽然常用的文献软件可以一键导出BibTex,但由于很多论文在投稿之前都会先发上Arxiv占坑,软件就很可能会把文献引出为来自Arxiv.我用的是 ...
- 清华大学&中国人工智能学会:2019人工智能发展报告
2019年11月30日,2019中国人工智能产业年会重磅发布<2019人工智能发展报告>(Report of Artificial Intelligence Development 201 ...
- 深度学习论文TOP10,2019一季度研究进展大盘点
9012年已经悄悄过去了1/3. 过去的100多天里,在深度学习领域,每天都有大量的新论文产生.所以深度学习研究在2019年开了怎样一个头呢? Open Data Science对第一季度的深度学习研 ...
- 第四届CCF大数据学术会议征文通知
第四届CCF大数据学术会议征文通知 2016年10月,兰州 近几年,大数据是各界高度关注积极布局的热点方向.2015年8月,国务院发表<促进大数据发展行动纲要>,正式将大数据提升为国家战略 ...
随机推荐
- 简单的员工管理系统(Mysql+jdbc+Servlet+JSP)
员工管理系统 因为学业要求,需要完成一个过关检测,但是因为检测之前没有做好准备,且想到之前用mysql+jdbc+Struts2+bootstrap做成了一个ATM系统(主要有对数据的增删改查操作), ...
- C#开发BIMFACE系列30 服务端API之模型对比1:发起模型对比
系列目录 [已更新最新开发文章,点击查看详细] 在实际项目中,由于需求变更经常需要对模型文件进行修改.为了便于用户了解模型在修改前后发生的变化,BIMFACE提供了模型在线对比功能,可以利用在 ...
- HelloWorld系列(一)- 手把手教你做JDK环境变量配置
分下载,配置,验证三个步骤讲解如何进行JDK环境变量配置. 步骤1:首先看配置成功后的效果步骤2:下载,并解压到E:\JDK步骤3:环境变量配置步骤4:Win10 下环境变量Path的配置步骤5:验证 ...
- angular 动态绑定class 写法
[ngClass]="{'aaa':true,'bbb':!true}" 这个是正确的 [ngClass]="{ true ? 'aaa':'bbb'}" ...
- 关于js拖放功能的实现
这是具体的拖放代码的HTML,里面依赖两个组件:EventUtil.js是兼容浏览器添加方法的库,EventTarget.js是一个发布-订阅者模式的对象库. EventUtil.js: var Ev ...
- 如何搭建自己的SpringBoot源码调试环境?--SpringBoot源码(一)
1 前言 这是SpringBoot2.1源码分析专题的第一篇文章,主要讲如何来搭建我们的源码阅读调试环境.如果有经验的小伙伴们可以略过此篇文章. 2 环境安装要求 IntelliJ IDEA JDK1 ...
- mysql 学习日记 悲观和乐观锁
理解 悲观锁就是什么事情都是需要小心翼翼,生怕弄错了出大问题, 一般情况下 "增删改" 都是有事务在进行操作的,但是 "查" 是不需要事务操作的, 但是凡事没 ...
- 数据结构 5 哈希表/HashMap 、自动扩容、多线程会出现的问题
上一节,我们已经介绍了最重要的B树以及B+树,使用的情况以及区别的内容.当然,本节课,我们将学习重要的一个数据结构.哈希表 哈希表 哈希也常被称作是散列表,为什么要这么称呼呢,散列.散列.其元素分布较 ...
- OFD电子证照模版制作工具 --(采用wpf开发)
前言 ofd应用的范围非常广,电子证照是其中非常重要的一个应用.同一类电子证照具有相同的板式.元数据:所以电子证照非常适合用模版来制作.模版就是板式样式固定,每个具体的证照只是文字或图片内容不同.比 ...
- Spark入门(三)--Spark经典的单词统计
spark经典之单词统计 准备数据 既然要统计单词我们就需要一个包含一定数量的文本,我们这里选择了英文原著<GoneWithTheWind>(<飘>)的文本来做一个数据统计,看 ...