又是一道卡常好题

坑掉我的 \(define \space int \space long \space long\) 感觉出题人并没有获得什么快乐……

Description

link

题意概述:

设 \(d(x)\) 为 \(x\) 的约数个数,求:

\[\sum_{i=1}^n \sum_{j=1}^n d(ij)
\]

多组询问,\(1\leq n,m,T \leq 5 \times10^4\)

Solution

首先给一个引理:

\[d(ij)=\sum_{x|i}\sum_{y|j} [gcd(x,y)=1]
\]

证明:参考\(@Siyuan\)的博客,好像可以用映射法?

\[Begin
\]

我们把式子转化一下:

\[\sum_{i=1}^n \sum_{j=1}^n \sum_{x|i}\sum_{y|j} [gcd(x,y)=1]
\]

(四个\(\sum\)好恐怖?)

然后改变求和的次序,首先枚举因数 \(x\) 和 \(y\) :

(这一步转化可以考虑用\(1\)到\(a\)中\(b\)的倍数个数来理解)

\[\sum_{x=1}^n \sum_{y=1}^n \lfloor \frac{n}{x}\rfloor \lfloor \frac{m}{y} \rfloor[gcd(x,y)=1]
\]

换一下,我们把这个 \(x\) 和 \(y\) 换成 \(i\) 和 \(j\)

\[\sum_{i=1}^n \sum_{j=1}^n \lfloor \frac{n}{i}\rfloor \lfloor \frac{m}{j} \rfloor[gcd(i,j)=1]
\]

下一步开始反演,根据套路式,设:

\[f(x)=\sum_{i=1}^n \sum_{j=1}^n \lfloor \frac{n}{i}\rfloor \lfloor \frac{m}{j} \rfloor[gcd(i,j)=1]
\]

\[g(x)=\sum_{x|d} f(d)
\]

所以得到关于 \(g(x)\) 的表达式:

\[g(x)=\sum_{i=1}^n \sum_{j=1}^n \lfloor \frac{n}{i}\rfloor \lfloor \frac{m}{j} \rfloor[x|gcd(i,j)]
\]

把 \(x\) 提出来,同时去掉 \(gcd\)

\[g(x)=\sum_{i=1}^{\frac{n}{x}}\sum_{j=1}^{\frac{m}{x}} \lfloor \frac{n}{ix} \rfloor \lfloor \frac{m}{jx} \rfloor
\]

再根据\(f(x)\)的定义,得到答案为\(f(1)\)

又有:

\[f(x)=\sum_{n|d} \mu(\frac{d}{n}) g(d)
\]

所以有

\[Ans=\sum_{i=1}^n \mu(i)g(i)
\]

我们预处理\(s(x)=\sum^{x}_ {i=1} \lfloor \frac{x}{i}\rfloor\)然后就可以快速求解本题

\[Finished
\]

Code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define reg register
namespace yspm{
inline int read()
{
int res=0,f=1; char k;
while(!isdigit(k=getchar())) if(k=='-') f=-1;
while(isdigit(k)) res=res*10+k-'0',k=getchar();
return res*f;
}
const int N=5e4+10;
int tot,mu[N],pri[N];ll s[N];
bool fl[N];
inline void prework()
{
mu[1]=1;
for(reg int i=2;i<N;++i)
{
if(!fl[i]) mu[i]=-1,pri[++tot]=i;
for(reg int j=1;j<=tot&&i*pri[j]<N;++j)
{
fl[i*pri[j]]=1;
if(i%pri[j]==0){mu[i*pri[j]]=0; break;}
else mu[i*pri[j]]=-mu[i];
}
} for(reg int i=1;i<N;++i) mu[i]+=mu[i-1];
for(reg int x=1;x<N;++x)
{
ll res=0;
for(reg int l=1,r;l<=x;l=r+1){r=x/(x/l); res+=1ll*(r-l+1)*(x/l);}
s[x]=res;
}
return ;
}
inline void work()
{
int n=read(),m=read(); if(n>m) swap(n,m);
ll ans=0; for(reg int l=1,r;l<=n;l=r+1){r=min(n/(n/l),m/(m/l)); ans+=1ll*(mu[r]-mu[l-1])*s[n/l]*s[m/l];}
return printf("%lld\n",ans),void();
}
signed main()
{
prework(); int T=read(); while(T--) work();
return 0;
}
}
signed main(){return yspm::main();}

LGOJ3327 【SDOI2015】约数个数和的更多相关文章

  1. BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演

    BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...

  2. P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)

    P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...

  3. 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

    3994: [SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...

  4. 洛谷 [SDOI2015]约数个数和 解题报告

    [SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...

  5. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  6. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  7. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  8. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  9. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  10. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

随机推荐

  1. POJ 1942:Paths on a Grid

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22918   Accepted: 5651 ...

  2. 18 11 26 用多进程 多线程 携程 实现 http 服务器的创建

    下面是一个  多进程 服务器的创建 import socket import re import multiprocessing def service_client(new_socket): &qu ...

  3. VBA代码优化及其他设置操作

    一.代码优化的一些方法 尽量减少在循环中遍历调用对象,公式计算 (操作VBA代码若出现屏幕闪屏,会拖慢运行速度),可以禁止屏幕闪屏.多用在操作工作表/薄,单元格的时候. Application.Scr ...

  4. shell 疑难

    #!/bin/bashBIN=`which $0`BIN=`dirname ${BIN}`BIN=`cd "$BIN"; pwd`  #列出脚本所在目录全局路径

  5. 第一个eclipse maven项目!我超全!

    前言:以前一直用idea做东西,今天突然想试一下,没想到配置起来是真的麻烦!!!!会出现各种各样的问题,太晚了,本文只做出几处非常严重的问题,如有疑问,请私信,留言 准备:本文     JDK 1.8 ...

  6. Mybatix实现in查询(五)

    在这一节,我们要向大家介绍一下在Mybatis中想要实现in查询,Mapper文件应该怎么配置. 1)在com.mybatis.dao.PartDao中增加接口函数 public List<Pa ...

  7. STM32F407读编码器没上拉电阻遇见的问题

    在调试之前由于本科阶段参加飞思卡尔智能汽车的竞赛,一直在使用与竞赛相关的单片机和编码器,后来由于工程的需要开始使用STM32的板子,在调试编码器的时候遇见了,使用了STM32的官方标准库中的定时器正交 ...

  8. linux.linuxidc.com - /2011年资料/Android入门教程/

    本文转自 http://itindex.net/detail/15843-linux.linuxidc.com-%E8%B5%84%E6%96%99-android Shared by Yuan 用户 ...

  9. Python笔记_第四篇_高阶编程_进程、线程、协程_1.进程

    1. 多任务原理: 现代操作系统,像win,max os x,linux,unix等都支持多任务. * 什么叫做多任务? 操作系统可以同时运行多个任务. * 单核CPU实现多任务原理? 操作系统轮流让 ...

  10. 深入分析Java反射(六)-反射调用异常处理

    前提 Java反射的API在JavaSE1.7的时候已经基本完善,但是本文编写的时候使用的是Oracle JDK11,因为JDK11对于sun包下的源码也上传了,可以直接通过IDE查看对应的源码和进行 ...