数学--数论--HDU1576 A / B(逆元)
问题描述
要求(A / B)%9973,但由于A很大,我们只被告知n(n = A%9973)(我们给定的A必能被B整除,且gcd(B,9973)= 1)。
输入项
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n <9973)和B(1 <= B <= 10 ^ 9)。
输出量
对应每组数据输出(A / B)%9973。
样本输入
2
1000 53
87 123456789
样本输出
7922
6060
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long INT;
const INT p = 9973;
INT ex_gcd(INT a, INT b,INT &x, INT &y)
{
if(b == 0){
x = 1;
y = 0;
return a;
}
INT d = ex_gcd(b , a % b,x,y);
INT tmp =x;
x = y;
y = tmp - a / b * y;
return d;
}
int main()
{
int T;
cin >> T;
while(T --){
INT n, b,x,y;
cin >> n >> b;
ex_gcd(b, p,x,y);
cout << (x % p * n % p + p) % p << endl;
}
return 0;
}
数学--数论--HDU1576 A / B(逆元)的更多相关文章
- 数学--数论--Hdu 5793 A Boring Question (打表+逆元)
There are an equation. ∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=? We define that (kj+1kj)=kj+1!kj! ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- 数学--数论--HDU1825(积性函数性质+和函数公式+快速模幂+非互质求逆元)
As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a lit ...
- 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- 具体数学数论章-----致敬Kunth
整除性(divisible): 引入了代表整除性. m\n (m|n) 表示m整除n.注意这里的整除.表示的是n = km(k为整数). 在整除性这里.m必须是个正数.也许你可以描述n 是 m 的k倍 ...
- NOIP复习之1 数学数论
noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖 ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
- Codeforces 622F 「数学数论」「数学规律」
题意: 给定n和k,求 1 ≤ n ≤ 109, 0 ≤ k ≤ 106 思路: 题目中给的提示是对于给定的k我们可以求出一个最高次为k+1的关于n的通项公式. 根据拉格郎日插值法,我们可以通过k+2 ...
- 算法模板の数学&数论
1.求逆元 int inv(int a) { ) ; return (MOD - MOD / a) * inv(MOD % a); } 2.线性筛法 bool isPrime[MAXN]; int l ...
随机推荐
- 【第二章】黎姿的python学习笔记
- leetcode c++做题思路和题解(1)——常规题总结
常规题总结 0. 目录 两数之和 1. 两数之和 耗时4ms(98.82%),内存6.2m. 两数之和--寻找中值向两边扩散法 1.1 思路 思路很简单,就是先找数组中target/2的前后两个值,然 ...
- JVM崩溃的原因及解决!
JVM崩溃的原因及解决! 前些天,搞JNI的时候,报了个JVM崩溃的错.错误信息如下: # # An unexpected error has been detected by HotSpot Vir ...
- vuepress+gitee 构建在线项目文档
目录 快速入门 在现有vue项目中安装本地开发依赖vuepress 在现有vue项目根目录下创建docs目录 创建并配置文档首页内容 运行,查看效果 可能会出现vue和vue-server-rende ...
- Nikto使用方法
Introduction Nikto是一款开源的(GPL)网站服务器扫描器,使用Perl基于LibWhisker开发.它可以对网站服务器进行全面的多种扫描,包括6400多个潜在危险的文件/CGI,检查 ...
- 学习Salesforce | Platform Developer Ⅰ 平台初级开发认证考试指南及备考资源
一.平台开发人员考试计划 Salesforce平台开发人员初级认证面向具有在Lightning平台上构建自定义应用程序的知识.技能和经验的个人. 该认证考核Lightning平台的基本编程能力,并会使 ...
- 从python爬虫以及数据可视化的角度来为大家呈现“227事件”后,肖战粉丝的数据图
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取t.cn ...
- PIL库之图片处理
(1)对图片生成缩略图 from PIL import Image im = Image.open("C:\Users\litchi\Desktop\picture1.jpg") ...
- vue2.x学习笔记(九)
接着前面的内容:https://www.cnblogs.com/yanggb/p/12577948.html. 数组的更新检测 数组在javascript是一种特殊的对象,不是像普通的对象那样通过Ob ...
- windows搭建Selenium
安装 pip install -U selenium 安装浏览器驱动 用不同的浏览器需要安装不同的驱动,驱动放置的路径添加到path中. Firefox geodriver Chrome 下载驱动Ch ...