1014 Waiting in Line (30分)

 

Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:

  • The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (NM+1)st one will have to wait in a line behind the yellow line.
  • Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
  • Customer​i​​ will take T​i​​ minutes to have his/her transaction processed.
  • The first N customers are assumed to be served at 8:00am.

Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.

For example, suppose that a bank has 2 windows and each window may have 2 custmers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer​1​​ is served at window​1​​ while customer​2​​ is served at window​2​​. Customer​3​​ will wait in front of window​1​​ and customer​4​​ will wait in front of window​2​​. Customer​5​​ will wait behind the yellow line.

At 08:01, customer​1​​ is done and customer​5​​ enters the line in front of window​1​​ since that line seems shorter now. Customer​2​​ will leave at 08:02, customer​4​​ at 08:06, customer​3​​ at 08:07, and finally customer​5​​ at 08:10.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (≤20, number of windows), M (≤10, the maximum capacity of each line inside the yellow line), K (≤1000, number of customers), and Q (≤1000, number of customer queries).

The next line contains K positive integers, which are the processing time of the K customers.

The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.

Output Specification:

For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output Sorry instead.

Sample Input:

2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7
 

Sample Output:

08:07
08:06
08:10
17:00
Sorry

题意:

银行的上班时间为上午8:00到17:00(540分钟),银行有N个窗口,每个窗口前可以有M个位置排队。

银行来了K个客户,依次给出k个客户办理业务需要的时间tim[i],有q次询问,

每次询问第x个人的结束时间,若第x个人没有办理业务就输出Sorry

客户选择最短的队伍排,根据每个客户的序号和服务时间来确定最后客户离开银行的时间。

题解:

  https://blog.csdn.net/Apie_CZX/article/details/45537627

#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<stack>
#include<algorithm>
#include<map>
#include<string.h>
#include<string>
#include<queue>
#define MAX 1000000
#define ll long long
using namespace std;
int tim[],vis[];//vis标记每一个顾客的结束时间
queue<int>p[];
int main()
{
int n,m,k,q;
cin>>n>>m>>k>>q;
for(int i=;i<=k;i++)
cin>>tim[i]; int sum=,cnt=;
for(int t=;t<;t++)//只处理在上班时间范围内的顾客
{
while(sum<n*m&&cnt<=k)//先让所有人先进去(总人数为小于黄线区域内可以容纳的人数)
{
int id=;//队伍最短的窗口编号
for(int i=;i<n;i++)
{
if(p[i].size()<p[id].size())//有更短的窗口
id=i;
if(p[id].size()==)//该窗口没人
vis[cnt]=t+tim[cnt];//标记第cnt个人的结束时间
if(p[id].size()<m&&cnt<=k)//准备处理下一个人
{
p[id].push(cnt);
cnt++;
sum++;
}
}
} for(int i=;i<n;i++)//n个窗口
{
for(int j=;j<p[i].size();j++)
{
if(t==vis[p[i].front()])//第i个窗口的结束时间恰好是当前时间t
{
p[i].pop();
sum--; if(!p[i].empty())//记录该窗口下一个顾客的结束时间
{
int temp=p[i].front();
vis[temp]=t+tim[temp];
}
}
}
}
}
for(int i=;i<q;i++)
{
int x;
cin>>x;
if(vis[x]==)
cout<<"Sorry"<<endl;
else
printf("%02d:%02d\n",+vis[x]/,vis[x]%);
}
return ;
}

1014 Waiting in Line (30分)的更多相关文章

  1. PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)

    1014 Waiting in Line (30 分)   Suppose a bank has N windows open for service. There is a yellow line ...

  2. 1014 Waiting in Line (30 分)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  3. PTA 1014 Waiting in Line (30分) 解题思路及满分代码

    题目 Suppose a bank has N windows open for service. There is a yellow line in front of the windows whi ...

  4. PAT 1014 Waiting in Line (30分) 一个简单的思路

    这题写了有一点时间,最开始想着优化一下时间,用优先队列去做,但是发现有锅,因为忽略了队的长度. 然后思考过后,觉得用时间线来模拟最好做,先把窗口前的队列填满,这样保证了队列的长度是统一的,这样的话如果 ...

  5. 【PAT甲级】1014 Waiting in Line (30 分)(队列维护)

    题面: 输入四个正整数N,M,K,Q(N<=20,M<=10,K,Q<=1000),N为银行窗口数量,M为黄线内最大人数,K为需要服务的人数,Q为查询次数.输入K个正整数,分别代表每 ...

  6. 1014 Waiting in Line (30)(30 分)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  7. PAT A 1014. Waiting in Line (30)【队列模拟】

    题目:https://www.patest.cn/contests/pat-a-practise/1014 思路: 直接模拟类的题. 线内的各个窗口各为一个队,线外的为一个,按时间模拟出队.入队. 注 ...

  8. 1014. Waiting in Line (30)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  9. 1014 Waiting in Line (30)(30 point(s))

    problem Suppose a bank has N windows open for service. There is a yellow line in front of the window ...

随机推荐

  1. 【经典数据结构】B树与B+树的解释

    本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 前面讲解了平衡查找树中的2-3树以及其实现红 ...

  2. 结构体sizeof()问题与字节对齐

    32位机器上定义如下结构体: struct xx { long long _x1; char _x2; int _x3; char _x4[2]; static int _x5; }; int xx: ...

  3. Python 之路

    Python之路[第一篇]:Python简介和入门 Python之路[第二篇]:Python基础(一) Python之路[第三篇]:Python基础(二) Python之路[第四篇]:模块 Pytho ...

  4. WiFi密码破解(wpa/wpa2)

    参考一篇很好的贴子:https://www.cnblogs.com/daoyi/p/Kali-Linux-shi-yongAircrack-po-jiewifi-mi-ma-wpawp.html #前 ...

  5. awk基本介绍

    AWK 是一种用于处理文本的编程语言工具.awk经过改进生成的新的版本nawk,gawk,现在默认linux系统下日常使用的是gawk,用命令可以查看正在应用的awk的来源(ls -l /bin/aw ...

  6. 项目中报错:Unsupported major.minor version

    在开发中或多或少都会遇到如下报错: java.lang.UnsupportedClassVersionError: com/xie/IntegerTest : Unsupported major.mi ...

  7. linux查看公网ip的方法

    curl ifconfig.me 或者 curl cip.cc

  8. POJ 1995 Raising Modulo Numbers(快速幂)

    嗯... 题目链接:http://poj.org/problem?id=1995 快速幂模板... AC代码: #include<cstdio> #include<iostream& ...

  9. SpringBoot Profiles特性

    今天我们了解SpringBoot Profiles特性 一.外部化配置  配置分为编译时和运行时,而Spring采用后者,在工作中有时也会两者一起使用.  何为"外部化配置"官方没 ...

  10. Python爬虫教程:requests模拟登陆github

    1. Cookie 介绍 HTTP 协议是无状态的.因此,若不借助其他手段,远程的服务器就无法知道以前和客户端做了哪些通信.Cookie 就是「其他手段」之一. Cookie 一个典型的应用场景,就是 ...