1014 Waiting in Line (30分)
1014 Waiting in Line (30分)
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:
- The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (NM+1)st one will have to wait in a line behind the yellow line.
- Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
- Customeri will take Ti minutes to have his/her transaction processed.
- The first N customers are assumed to be served at 8:00am.
Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.
For example, suppose that a bank has 2 windows and each window may have 2 custmers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer1 is served at window1 while customer2 is served at window2. Customer3 will wait in front of window1 and customer4 will wait in front of window2. Customer5 will wait behind the yellow line.
At 08:01, customer1 is done and customer5 enters the line in front of window1 since that line seems shorter now. Customer2 will leave at 08:02, customer4 at 08:06, customer3 at 08:07, and finally customer5 at 08:10.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (≤20, number of windows), M (≤10, the maximum capacity of each line inside the yellow line), K (≤1000, number of customers), and Q (≤1000, number of customer queries).
The next line contains K positive integers, which are the processing time of the K customers.
The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.
Output Specification:
For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output Sorry instead.
Sample Input:
2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7
Sample Output:
08:07
08:06
08:10
17:00
Sorry
题意:
银行的上班时间为上午8:00到17:00(540分钟),银行有N个窗口,每个窗口前可以有M个位置排队。银行来了K个客户,依次给出k个客户办理业务需要的时间tim[i],有q次询问,每次询问第x个人的结束时间,若第x个人没有办理业务就输出Sorry客户选择最短的队伍排,根据每个客户的序号和服务时间来确定最后客户离开银行的时间。
题解:
https://blog.csdn.net/Apie_CZX/article/details/45537627
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<stack>
#include<algorithm>
#include<map>
#include<string.h>
#include<string>
#include<queue>
#define MAX 1000000
#define ll long long
using namespace std;
int tim[],vis[];//vis标记每一个顾客的结束时间
queue<int>p[];
int main()
{
int n,m,k,q;
cin>>n>>m>>k>>q;
for(int i=;i<=k;i++)
cin>>tim[i]; int sum=,cnt=;
for(int t=;t<;t++)//只处理在上班时间范围内的顾客
{
while(sum<n*m&&cnt<=k)//先让所有人先进去(总人数为小于黄线区域内可以容纳的人数)
{
int id=;//队伍最短的窗口编号
for(int i=;i<n;i++)
{
if(p[i].size()<p[id].size())//有更短的窗口
id=i;
if(p[id].size()==)//该窗口没人
vis[cnt]=t+tim[cnt];//标记第cnt个人的结束时间
if(p[id].size()<m&&cnt<=k)//准备处理下一个人
{
p[id].push(cnt);
cnt++;
sum++;
}
}
} for(int i=;i<n;i++)//n个窗口
{
for(int j=;j<p[i].size();j++)
{
if(t==vis[p[i].front()])//第i个窗口的结束时间恰好是当前时间t
{
p[i].pop();
sum--; if(!p[i].empty())//记录该窗口下一个顾客的结束时间
{
int temp=p[i].front();
vis[temp]=t+tim[temp];
}
}
}
}
}
for(int i=;i<q;i++)
{
int x;
cin>>x;
if(vis[x]==)
cout<<"Sorry"<<endl;
else
printf("%02d:%02d\n",+vis[x]/,vis[x]%);
}
return ;
}
1014 Waiting in Line (30分)的更多相关文章
- PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)
1014 Waiting in Line (30 分) Suppose a bank has N windows open for service. There is a yellow line ...
- 1014 Waiting in Line (30 分)
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...
- PTA 1014 Waiting in Line (30分) 解题思路及满分代码
题目 Suppose a bank has N windows open for service. There is a yellow line in front of the windows whi ...
- PAT 1014 Waiting in Line (30分) 一个简单的思路
这题写了有一点时间,最开始想着优化一下时间,用优先队列去做,但是发现有锅,因为忽略了队的长度. 然后思考过后,觉得用时间线来模拟最好做,先把窗口前的队列填满,这样保证了队列的长度是统一的,这样的话如果 ...
- 【PAT甲级】1014 Waiting in Line (30 分)(队列维护)
题面: 输入四个正整数N,M,K,Q(N<=20,M<=10,K,Q<=1000),N为银行窗口数量,M为黄线内最大人数,K为需要服务的人数,Q为查询次数.输入K个正整数,分别代表每 ...
- 1014 Waiting in Line (30)(30 分)
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...
- PAT A 1014. Waiting in Line (30)【队列模拟】
题目:https://www.patest.cn/contests/pat-a-practise/1014 思路: 直接模拟类的题. 线内的各个窗口各为一个队,线外的为一个,按时间模拟出队.入队. 注 ...
- 1014. Waiting in Line (30)
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...
- 1014 Waiting in Line (30)(30 point(s))
problem Suppose a bank has N windows open for service. There is a yellow line in front of the window ...
随机推荐
- Chrome - 使用 开发者工具 对页面截图
概述 使用 开发者工具 对页面截图 背景 经常需要截图 常用的截图模式有这些 窗口截图 区域截图 gif 问题 Chrome 如何截长图 firefox 好像有插件 1. 解决: 使用 Chrome ...
- Git - 03. git 工作空间
1. 概述 git 存放代码的地方 2. 创建 命令 # 1. 从无到有 > git init # 2. 从远程拉去现有的仓库 > git clone <url> 3. 文件生 ...
- Centos6.10-FastDFS-Storage.conf配置示例
Centos610系列配置 # is this config file disabled # false for enabled # true for disabled disabled = fals ...
- 关于 appium get_attribute 方法的坑
(得要学着看源码) 问题: self.driver.find_element_by_id("id").get_attribute("content-desc") ...
- php的分层思想
- Oracle 设置NLS_CHARACTERSET字符集
Oracle 设置NLS_CHARACTERSET字符集 sqlplus "/ as sysdba"SQL> SHUTDOWN IMMEDIATE;SQL> START ...
- JAVA8-用lamda表达式和增强版Comparator进行排序
1.单条件升序: list.sort(Comparator.comparing(User::getId); 2.降序: list.sort(Comparator.comparing(User::get ...
- MockMVC - 基于RESTful风格的Springboot,SpringMVC的测试
MockMVC - 基于RESTful风格的SpringMVC的测试 对于前后端分离的项目而言,无法直接从前端静态代码中测试接口的正确性,因此可以通过MockMVC来模拟HTTP请求.基于RESTfu ...
- 16 Z变换
Z变换 由于\(DTFT\)变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入\(Z\)变换. 定义 已知序列的\(DTFT\)为 \[ ...
- 用纯css实现双边框效果
1. box-shadow:0 0 0 1px #feaa9e,0 0 0 5px #fd696f 2. border:1px solid #feaa9e; outline:5px solid #fd ...