正文

简单描述一下题意:

士兵想要过河,他每一次可以往下走一格,也可以往右走一格,但马一步走到的地方是不能走的,问走到\(n\)行,\(m\)列有多少种走法

我们显然应该先根据马的位置将不能走的格子做一下标记

于是,就会写下这段代码:

void work(long long x,long long y){
ma[x][y]=1;
ma[x-1][y-2]=1;
ma[x-2][y-1]=1;
ma[x-2][y+1]=1;
ma[x-1][y+2]=1;
ma[x+1][y-2]=1;
ma[x+2][y-1]=1;
ma[x+2][y+1]=1;
ma[x+1][y+2]=1;
}

之后就可以使用奥数中的一种简单而常用的方法——标数法

可以举个例子

从这个表格的第一行第一列,走到第二行第二列的走法数量是由走到第一行第二列的方案数+第二行第一列的方案数

也就是走到x行,y列的方案数=走到x-1行,y列的方案数+走到x行,y-1列的方案数(出界就按0算)

也就是

\[f[i][j]=f[i-1][j]+f[i][j-1]
\]

因为走到\(x\)行\(y\)列的方案显然是来自于它的左边和它的上面,因为只有这两个格子才可以一步到达这个格子。

于是我们就可以开始递推:

for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(i==1&&j==1)continue;
if(ma[i][j]==0)x[i][j]=x[i-1][j]+x[i][j-1];
}
}

下面是我AC的代码

#include <bits/stdc++.h>
using namespace std;
long long a,b,n,m,x[23][23],ma[23][23];
void work(long long x,long long y){
ma[x][y]=1;
ma[x-1][y-2]=1;
ma[x-2][y-1]=1;
ma[x-2][y+1]=1;
ma[x-1][y+2]=1;
ma[x+1][y-2]=1;
ma[x+2][y-1]=1;
ma[x+2][y+1]=1;
ma[x+1][y+2]=1;
}
int main(){
scanf("%lld %lld %lld %lld",&n,&m,&a,&b);
a++;
b++;
n++;
m++;
work(a,b);
x[1][1]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(i==1&&j==1)continue;
if(ma[i][j]==0)x[i][j]=x[i-1][j]+x[i][j-1];
}
}
printf("%lld",x[n][m]);
return 0;
}

后记与补充

观看这张图,我们还可以发现其他的东西,我们能发现下面一行比上一行大的值,就是它左边格子的值,所以,我们可以将这道题优化成一维,代码实现也是很简单的。

\[f[i]+=f[i-1]
\]

#include <bits/stdc++.h>
using namespace std;
long long a,b,n,m,f[23],ma[23][23];
void work(long long x,long long y){
ma[x][y]=1;
ma[x-1][y-2]=1;
ma[x-2][y-1]=1;
ma[x-2][y+1]=1;
ma[x-1][y+2]=1;
ma[x+1][y-2]=1;
ma[x+2][y-1]=1;
ma[x+2][y+1]=1;
ma[x+1][y+2]=1;
}
int main(){
scanf("%lld %lld %lld %lld",&n,&m,&a,&b);
a++;
b++;
n++;
m++;
work(a,b);
x[1][1]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
if(i==1&&j==1)continue;
if(ma[i][j]==0)f[j]+=f[j-1];
}
printf("%lld",f[m]);
return 0;
}

如果我的文章对你有帮助请点个赞!!!

谢谢。

题解 P1002 【过河卒】的更多相关文章

  1. 洛谷 P1002过河卒

    洛谷 P1002过河卒 题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点 ...

  2. 洛谷P1002 过河卒 [2017年4月计划 动态规划15]

    P1002 过河卒 题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之 ...

  3. P1002 过河卒【dp】

    P1002 过河卒 题目描述 棋盘上AAA点有一个过河卒,需要走到目标BBB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CCC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制 ...

  4. 洛谷P1002 过河卒 题解 动态规划

    题目链接:https://www.luogu.com.cn/problem/P1002 题目大意 棋盘上\(A\)点有一个过河卒,需要走到目标\(B\)点.卒行走的规则:可以向下.或者向右.同时在棋盘 ...

  5. 洛谷 P1002 过河卒 【棋盘dp】

    题目链接:https://www.luogu.org/problemnew/show/P1002 题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点 ...

  6. 洛谷[P1002]过河卒

    原题地址:https://www.luogu.org/problemnew/show/P1002 题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点 ...

  7. P1002 过河卒

    题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为“马拦过河卒”. ...

  8. luogu P1002 过河卒

    题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为“马拦过河卒”. ...

  9. 洛谷P1002 过河卒

    关于蒟蒻的我,刚刚接触DP....   那么就来做一道简单DP吧.... 首先先看题: 题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一 ...

  10. P1002 过河卒 【递推、简单动规】

    题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为“马拦过河卒 ...

随机推荐

  1. Proto3:编码

    本文介绍protocol buffer消息二进制传输格式.在应用程序中使用protocol buffer时,你并不需要了解这些,但它对你了解protocol buffer格式如何影响你的编码消息的大小 ...

  2. 前端开发个人小结 · Retrospection的博客

    序 2018年转眼来到了最后一个月,算下来我进入前端之门也有一年了,虽然下半年由于忙于筹备毕业论文的相关事项,前端这一块有所放下,但是想想还是给自己这一年的学习做一个总结. 现代化软件开发确实是一个复 ...

  3. 【转载】ArcGIS中的WKID

    原出处:http://www.cnblogs.com/liweis/p/5951032.html 提到坐标系统,大家多少能明白一些,但在运用时,有些朋友搞得不是非常清楚,以后专门来总结.在实地生产项目 ...

  4. NIPS 2016:普及机器学习

    ​ 2016:普及机器学习" title="NIPS 2016:普及机器学习"> ​左起:微软研究员Robert Schapire,John Langford,Al ...

  5. js进阶之重复的定时器

    使用setInterval()创建的定时器确保了定时器代码规则的插入队列中,这个的问题是:定时器代码可能在代码再次被添加到队列之前还没有完成执行,结果导致定时器代码连续运行了好几次,而之间没有任何停顿 ...

  6. MySQL的字符集和乱码问题

    1.字符集知识 #概述 .字符集是一套文字符号及其编码.比较规则的集合,第一个计算机字符串ASC2 .mysql数据库字符集包括字符集(character)和 校对规则,其中字符集使用来定义mysql ...

  7. 使用timeit测试Python函数的性能

    timeit是Python标准库内置的小工具,可以快速测试小段代码的性能. 认识timeit timeit 函数: timeit.timeit(stmt, setup,timer, number) 参 ...

  8. node中fs模块 - fs.open() fs.read() fs.write() fs.close()

    var fs = require('fs') fs.open('./a.txt', 'a+', function(err, fd) { // 打开文件后 创建缓冲区放置数据 ), // 读取多少字节 ...

  9. JZOJ 5246. 【NOIP2017模拟8.8A组】Trip(trip)

    5246. [NOIP2017模拟8.8A组]Trip(trip) (File IO): input:trip.in output:trip.out Time Limits: 1500 ms Memo ...

  10. ARC中__bridge, __bridge__transfer, __bridge_retained 关系

    总结于 IOS Tuturial 中 ARC两章,详细在dropbox pdf 文档. Toll-Free Bridging 当你在 Objective-C 和 Core Foundation 对象之 ...