MySql索引原理分析
面试
问:数据库中最常见的慢查询优化方式是什么? 同学A:加索引。
问:为什么加索引能优化慢查询?同学A:...不知道同学B:因为索引其实就是一种优化查询的数据结构,比如Mysql中的索引是用B+树实现的,而B+树就是一种数据结构,可以优化查询速度,可以利用索引快速查找数据,所以能优化查询。
问:你知道哪些数据结构可以提高查询速度?(听到这个问题就感觉此处有坑...)同学B:哈希表、完全平衡二叉树、B树、B+树等等。
问:那这些数据结构既然都能优化查询速度,那Mysql种为何选择使用B+树?同学B:...不知道
提问
SHOW INDEX FROM employees.titles;
有一个titles表,主键由empno,title,fromdate三个字段组成。
那么以下几个语句会用到索引吗?
select*fromemployees.titleswhereemp_no=1
select*fromemployees.titleswheretitle='1'
select*fromemployees.titleswhereemp_no='1'andtitle=1
select*fromemployees.titleswheretitle='1'andemp_no=1
为什么哈希表、完全平衡二叉树、B树、B+树都可以优化查询,为何Mysql独独喜欢B+树?
哈希表有什么特点?
假如有这么一张表(表名:sanguo):
现在对name字段建立哈希索引:
注意字段值所对应的数组下标是哈希算法随机算出来的,所以可能出现哈希冲突。那么对于这样一个索引结构,现在来执行下面的sql语句:
select*fromsanguowherename='周瑜'
可以直接对‘周瑜’按哈希算法算出来一个数组下标,然后可以直接从数据中取出数据并拿到锁对应那一行数据的地址,进而查询那一行数据。 那么如果现在执行下面的sql语句:
select*fromsanguowherename>'周瑜'
则无能为力,因为哈希表的特点就是可以快速的精确查询,但是不支持范围查询。
如果用完全平衡二叉树呢?
还是上面的表数据用完全平衡二叉树表示如下图(为了简单,数据对应的地址就不画在图中了。):
图中的每一个节点实际上应该有四部分:
左指针,指向左子树
键值
键值所对应的数据的存储地址
右指针,指向右子树
另外需要提醒的是,二叉树是有顺序的,简单的说就是“左边的小于右边的”假如我们现在来查找‘周瑜’,需要找2次(第一次曹操,第二次周瑜),比哈希表要多一次。而且由于完全平衡二叉树是有序的,所以也是支持范围查找的。
如果用B树呢?
还是上面的表数据用B树表示如下图(为了简单,数据对应的地址就不画在图中了。):
可以发现同样的元素,B树的表示要比完全平衡二叉树要“矮”,原因在于B树中的一个节点可以存储多个元素。
如果用B+树呢?
还是上面的表数据用B+树表示如下图(为了简单,数据对应的地址就不画在图中了。):
我们可以发现同样的元素,B+树的表示要比B树要“胖”,原因在于B+树中的非叶子节点会冗余一份在叶子节点中,并且叶子节点之间用指针相连。
那么B+树到底有什么优势呢?
这里我们用“反证法”,假如我们现在就用完全平衡二叉树作为索引的数据结构,我们来看一下有什么不妥的地方。实际上,索引也是很“大”的,因为索引也是存储元素的,我们的一个表的数据行数越多,那么对应的索引文件其实也是会很大的,实际上也是需要存储在磁盘中的,而不能全部都放在内存中,所以我们在考虑选用哪种数据结构时,我们可以换一个角度思考,哪个数据结构更适合从磁盘中读取数据,或者哪个数据结构能够提高磁盘的IO效率。回头看一下完全平衡二叉树,当我们需要查询“张飞”时,需要以下步骤
从磁盘中取出“曹操”到内存,CPU从内存取出数据进行笔记,“张飞”<“曹操”,取左子树(产生了一次磁盘IO)
从磁盘中取出“周瑜”到内存,CPU从内存取出数据进行笔记,“张飞”>“周瑜”,取右子树(产生了一次磁盘IO)
从磁盘中取出“孙权”到内存,CPU从内存取出数据进行笔记,“张飞”>“孙权”,取右子树(产生了一次磁盘IO)
从磁盘中取出“黄忠”到内存,CPU从内存取出数据进行笔记,“张飞”=“张飞”,找到结果(产生了一次磁盘IO)
同理,回头看一下B树,我们发现只发送三次磁盘IO就可以找到“张飞”了,这就是B树的优点:一个节点可以存储多个元素,相对于完全平衡二叉树所以整棵树的高度就降低了,磁盘IO效率提高了。
而B+树是B树的升级版,只是把非叶子节点冗余一下,这么做的好处是为了提高范围查找的效率。
到这里可以总结出来,Mysql选用B+树这种数据结构作为索引,可以提高查询索引时的磁盘IO效率,并且可以提高范围查询的效率,并且B+树里的元素也是有序的。
那么,一个B+树的节点中到底存多少个元素合适呢?
其实也可以换个角度来思考B+树中一个节点到底多大合适?
答案是:B+树中一个节点为一页或页的倍数最为合适。因为如果一个节点的大小小于1页,那么读取这个节点的时候其实也会读出1页,造成资源的浪费;如果一个节点的大小大于1页,比如1.2页,那么读取这个节点的时候会读出2页,也会造成资源的浪费;所以为了不造成浪费,所以最后把一个节点的大小控制在1页、2页、3页、4页等倍数页大小最为合适。
那么,Mysql中B+树的一个节点大小为多大呢?
这个问题的答案是“1页”,这里说的“页”是Mysql自定义的单位(其实和操作系统类似),Mysql的Innodb引擎中一页的默认大小是16k(如果操作系统中一页大小是4k,那么Mysql中1页=操作系统中4页),可以使用命令SHOW GLOBAL STATUS like 'Innodbpagesize'; 查看。
并且还可以告诉你的是,一个节点为1页就够了。
Mysql中MyISAM和innodb使用B+树
通常我们认为B+树的非叶子节点不存储数据,只有叶子节点才存储数据;而B树的非叶子和叶子节点都会存储数据,会导致非叶子节点存储的索引值会更少,树的高度相对会比B+树高,平均的I/O效率会比较低,所以使用B+树作为索引的数据结构,再加上B+树的叶子节点之间会有指针相连,也方便进行范围查找。上图的data区域两个存储引擎会有不同。
MyISAM中的B+树
MYISAM中叶子节点的数据区域存储的是数据记录的地址
主键索引
辅助索引
MyISAM存储引擎在使用索引查询数据时,会先根据索引查找到数据地址,再根据地址查询到具体的数据。并且主键索引和辅助索引没有太多区别。
InnoDB中的B+树
InnoDB中主键索引的叶子节点的数据区域存储的是数据记录,辅助索引存储的是主键值
主键索引
辅助索引
Innodb中的主键索引和实际数据时绑定在一起的,也就是说Innodb的一个表一定要有主键索引,如果一个表没有手动建立主键索引,Innodb会查看有没有唯一索引,如果有则选用唯一索引作为主键索引,如果连唯一索引也没有,则会默认建立一个隐藏的主键索引(用户不可见)。另外,Innodb的主键索引要比MyISAM的主键索引查询效率要高(少一次磁盘IO),并且比辅助索引也要高很多。所以,我们在使用Innodb作为存储引擎时,我们最好:
手动建立主键索引
尽量利用主键索引查询
为什么一个节点为1页(16k)就够了?
对着上面Mysql中Innodb中对B+树的实际应用(主要看主键索引),可以发现B+树中的一个节点存储的内容是:
非叶子节点:主键+指针
叶子节点:数据
那么,假设我们一行数据大小为1K,那么一页就能存16条数据,也就是一个叶子节点能存16条数据;再看非叶子节点,假设主键ID为bigint类型,那么长度为8B,指针大小在Innodb源码中为6B,一共就是14B,那么一页里就可以存储16K/14=1170个(主键+指针),那么一颗高度为2的B+树能存储的数据为:117016=18720条,一颗高度为3的B+树能存储的数据为:11701170*16=21902400(千万级条)。所以在InnoDB中B+树高度一般为1-3层,它就能满足千万级的数据存储。在查找数据时一次页的查找代表一次IO,所以通过主键索引查询通常只需要1-3次IO操作即可查找到数据。所以也就回答了我们的问题,1页=16k这么设置是比较合适的,是适用大多数的企业的,当然这个值是可以修改的,所以也能根据业务的时间情况进行调整。
MySql索引原理分析的更多相关文章
- 重新学习MySQL数据库5:根据MySQL索引原理进行分析与优化
重新学习MySQL数据库5:根据MySQL索引原理进行分析与优化 一:Mysql原理与慢查询 MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能 ...
- MySQL索引原理及慢查询优化
原文:http://tech.meituan.com/mysql-index.html 一个慢查询引发的思考 select count(*) from task where status=2 and ...
- (转)MySQL索引原理及慢查询优化
转自美团技术博客,原文地址:http://tech.meituan.com/mysql-index.html 建索引的一些原则: 1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到 ...
- MySQL索引原理及慢查询优化 转载
原文地址: http://tech.meituan.com/mysql-index.html MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能 ...
- MySQL索引原理及慢查询优化(转)
add by zhj:这是美团点评技术团队的一篇文章,讲的挺不错的. 原文:http://tech.meituan.com/mysql-index.html MySQL凭借着出色的性能.低廉的成本.丰 ...
- 【转载】MySQL索引原理及慢查询优化
原文链接:美团点评技术团队:http://tech.meituan.com/mysql-index.html MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型 ...
- MySQL索引原理与慢查询优化
索引目的 索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql.如果没有索引,那么你可能需要把所有单词看一遍才 ...
- Mysql 索引优化分析
MySQL索引优化分析 为什么你写的sql查询慢?为什么你建的索引常失效?通过本章内容,你将学会MySQL性能下降的原因,索引的简介,索引创建的原则,explain命令的使用,以及explain输出字 ...
- 干货:MySQL 索引原理及慢查询优化
MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能出色,但所谓"好马配好鞍",如何能够更好的使用它,已经成为开发工程师的必修 ...
随机推荐
- QCMS代码审计:XSS+SQL+后台getshell
qcms是一款比较小众的cms,最近更新应该是17年,代码框架都比较简单,但问题不少倒是... 网站介绍 QCMS是一款小型的网站管理系统.拥有多种结构类型,包括:ASP+ACCESS.ASP+SQL ...
- 微擎系统BUG漏洞解决方法汇总
微擎微赞系统BUG漏洞解决方法汇总 弄了微擎系统来玩玩,发觉这个系统BUG还不少,阿里云的提醒都一大堆,主要是没有针对SQL注入做预防,处理的办法基本都是用转义函数. 汇总: 1. 漏洞名称: 微擎任 ...
- JSTL中获取URL参数
使用JSTL时,URL会被隐含的对象param包裹起来,使用param.变量名,直接获取值 <body>hello:${param.name}</body> 依据此逻辑,在使用 ...
- lib文件和dll文件
一. 简介 1.1 C++两种库文件 lib包含了函数所在的dll文件和文件中函数位置的信息(入口),代码由运行时加载在进程空间中的dll提供,称为动态链接库dynamic link library. ...
- 微信小程序中,如何实现显示,隐藏密码的功能
最近在搞小程序的开发,遇到隐藏,显示密码的功能的时候,电脑上调试没问题,但是手机上面点击却没有效果,必须要跳转到其他页面再跳回来,才能正常显示. 一时间搞得我很头疼,查找资料后,终于知道了是什么原因. ...
- 报错信息 Context []startup failed due to previous errors
文章转自:http://blog.sina.com.cn/s/blog_49b4a1f10100q93e.html 框架搭建好后,启动服务器出现如下的信息: log4j:WARN No appende ...
- SSM-Maven配置
全配置 新建项目 新建文件夹 - src - main - java - resources - webapp - WEB-INF - index.jsp - pom.xml <?xml ver ...
- php 实现店铺装修5
/** * @title 选中蜂店装修模板样式 * @param plate_id 是 int 商品(平台或特色)装修样式ID * @param type_id 是 int 要装修商品的类型(1-平台 ...
- SciPy 介绍
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- Maven是什么,如何使用Maven
一.简单的小问题? 1.1.假如你正在Eclipse下开发两个Java项目,姑且把它们称为A.B,其中A项目中的一些功能依赖于B项目中的某些类,那么如何维系这种依赖关系的呢? 很简单,这不就是跟我们之 ...