【译】Using .NET for Apache Spark to Analyze Log Data
1 什么是日志分析?
2 编写一个应用
- 创建Spark会话
- 读取输入数据,通常使用DataFrame
- 操作和分析输入数据,通常使用Spark SQL
2.1 创建Spark会话
SparkSession spark = SparkSession
.Builder()
.AppName("Apache User Log Processing")
.GetOrCreate();
2.2 读取输入数据
DataFrame generalDf = spark.Read().Text("<path to input data set>");
2.3 操纵和分析输入的数据
string s_apacheRx = "^(\S+) (\S+) (\S+) [([\w:/]+\s[+-]\d{4})] \"(\S+) (\S+) (\S+)\" (\d{3}) (\d+)";
我们如何对DataFrame的每一行执行计算,比如将每个日志条目与上面的s_apacheRx进行匹配?答案是Spark SQL。
2.4 Spark SQL
spark.Udf().Register<string, bool>("GeneralReg", log => Regex.IsMatch(log, s_apacheRx));
DataFrame generalDf = spark.Sql("SELECT logs.value, GeneralReg(logs.value) FROM Logs");
generalDf = generalDf.Filter(generalDf["GeneralReg(value)"]);
generalDf.Show();
// Choose valid log entries that start with 10
spark.Udf().Register<string, bool>(
"IPReg",
log => Regex.IsMatch(log, "^(?=10)")); generalDf.CreateOrReplaceTempView("IPLogs"); // Apply UDF to get valid log entries starting with 10
DataFrame ipDf = spark.Sql(
"SELECT iplogs.value FROM IPLogs WHERE IPReg(iplogs.value)");
ipDf.Show(); // Choose valid log entries that start with 10 and deal with spam
spark.Udf().Register<string, bool>(
"SpamRegEx",
log => Regex.IsMatch(log, "\\b(?=spam)\\b")); ipDf.CreateOrReplaceTempView("SpamLogs"); // Apply UDF to get valid, start with 10, spam entries
DataFrame spamDF = spark.Sql(
"SELECT spamlogs.value FROM SpamLogs WHERE SpamRegEx(spamlogs.value)");
int numGetRequests = spamDF
.Collect()
.Where(r => ContainsGet(r.GetAs<string>("value")))
.Count();
// Use regex matching to group data
// Each group matches a column in our log schema
// i.e. first group = first column = IP
public static bool ContainsGet(string logLine)
{
Match match = Regex.Match(logLine, s_apacheRx); // Determine if valid log entry is a GET request
if (match.Success)
{
Console.WriteLine("Full log entry: '{0}'", match.Groups[].Value); // 5th column/group in schema is "method"
if (match.Groups[].Value == "GET")
{
return true;
}
} return false; }
3 运行程序
- –class,用于调用DotnetRunner
- –master, 用于定义是本地还是云端的Spark提交
- Path,Microsoft.Spark jar的路径
- 应用程序的其他参数或依赖项,例如输入文件或包含UDF定义的dll的路径。
spark-submit --class org.apache.spark.deploy.dotnet.DotnetRunner --master local /path/to/microsoft-spark-<version>.jar dotnet /path/to/netcoreapp<version>/LoggingApp.dll
4 .NET for Apache Spark总结
名词解释
Ad-hoc Query
var mySqlQuery = "SELECT * FROM table WHERE id = " + std_name;
每次执行这一条查询的时候返回的结果都可能会不一样,这取决于std_name的值。
原文链接
【译】Using .NET for Apache Spark to Analyze Log Data的更多相关文章
- Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)
文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...
- Using Apache Spark and MySQL for Data Analysis
What is Spark Apache Spark is a cluster computing framework, similar to Apache Hadoop. Wikipedia has ...
- Apache Spark 2.2.0 中文文档
Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 ...
- Apache Spark 2.2.0 中文文档 - Spark 编程指南 | ApacheCN
Spark 编程指南 概述 Spark 依赖 初始化 Spark 使用 Shell 弹性分布式数据集 (RDDs) 并行集合 外部 Datasets(数据集) RDD 操作 基础 传递 Functio ...
- Structured streaming: A Declarative API for Real-Time Applications in Apache Spark(Abstract: 原文+注译)
题目中文:结构化流: Apache spark中,处理实时数据的声明式API Abstract with the ubiquity of real-time data, organizations n ...
- 使用Apache Spark 对 mysql 调优 查询速度提升10倍以上
在这篇文章中我们将讨论如何利用 Apache Spark 来提升 MySQL 的查询性能. 介绍 在我的前一篇文章Apache Spark with MySQL 中介绍了如何利用 Apache Spa ...
- Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...
- Apache Spark 2.2中基于成本的优化器(CBO)(转载)
Apache Spark 2.2最近引入了高级的基于成本的优化器框架用于收集并均衡不同的列数据的统计工作 (例如., 基(cardinality).唯一值的数量.空值.最大最小值.平均/最大长度,等等 ...
- How-to: Tune Your Apache Spark Jobs (Part 1)
Learn techniques for tuning your Apache Spark jobs for optimal efficiency. When you write Apache Spa ...
随机推荐
- 第十一节:configParse模块
作用:配置文件解析模块,用来增删改查配置文件内容,不区分大小写 配置文件案例: tets.ini [模块] key=value import configparser config = configp ...
- 如何用python无账号无限制获取企查查信息
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http ...
- Robberies 杭电
可怜的POIUYTREWQ最近想买下dota2的商品,但是手头缺钱.他想起了之前看过的一部大片,觉得抢银行也许是个不错的选择.他认为,坏人被抓是因为没有预先规划.于是他在之前的几个月对各大银行进行了一 ...
- [转+自]disable_functions之巧用LD_PRELOAD突破
写在前面: 通过知乎的一篇艰难的渗透提权,引发了一些对于disable_funcionts绕过的思考,虽然在暑假日记中记载了四种绕过disable_functions,比如com组件,pcntl_ex ...
- selenium 元素定位常用的方法
元素定位的方法有2个 driver.findElement(By.args) 返回值是WebElement //此方法是获取单一的页面元素 driver.findElements ...
- 女屌丝前端逆袭记(一)之浅谈float
提到前端,相信作为开发者的你或是正在看这篇文章的你并不陌生.前端可以说是直接与用户打交道的一个端口,不论是页面前端亦或是后端界面的前端,都是直接与用户对接的,因此前端设计对于一个网站或管理系统,都是至 ...
- C++头文件问题
自己定义的头文件必须要用“***.h”系统头文件必须要用<***.h>stdafx.h 必须放在所有头文件的最前面(如果不放,debug版本没有问题:release版本有问题,会报错)
- RSA非对称可逆加密
/// <summary> /// RSA ECC /// 可逆非对称加密 /// 非对称加密算法的优点是密钥管理很方便,缺点是速度慢. /// </summary> usin ...
- js上传文件前判断获取文件大小并且加以判断
描述:要求浏览器单个上传文件大小不超过10M. 解决方案: var fileSize = $("#fileId")[0].files[0].size/(1024*1024);if( ...
- 算法笔记刷题1(codeup 1934)
准备6月份的拼题甲级中(本来现在这两天就考试了,但是因为疫情的原因延期了) 刚刚开始按算法笔记刷题,今天是探索codeup的第一天. 一开始并没有把多点测试当回事,直到一错再错,心态爆炸... 附上我 ...