【译】Using .NET for Apache Spark to Analyze Log Data
1 什么是日志分析?
2 编写一个应用
- 创建Spark会话
- 读取输入数据,通常使用DataFrame
- 操作和分析输入数据,通常使用Spark SQL
2.1 创建Spark会话
SparkSession spark = SparkSession
.Builder()
.AppName("Apache User Log Processing")
.GetOrCreate();
2.2 读取输入数据
DataFrame generalDf = spark.Read().Text("<path to input data set>");
2.3 操纵和分析输入的数据
string s_apacheRx = "^(\S+) (\S+) (\S+) [([\w:/]+\s[+-]\d{4})] \"(\S+) (\S+) (\S+)\" (\d{3}) (\d+)";
我们如何对DataFrame的每一行执行计算,比如将每个日志条目与上面的s_apacheRx进行匹配?答案是Spark SQL。
2.4 Spark SQL
spark.Udf().Register<string, bool>("GeneralReg", log => Regex.IsMatch(log, s_apacheRx));
DataFrame generalDf = spark.Sql("SELECT logs.value, GeneralReg(logs.value) FROM Logs");
generalDf = generalDf.Filter(generalDf["GeneralReg(value)"]);
generalDf.Show();
// Choose valid log entries that start with 10
spark.Udf().Register<string, bool>(
"IPReg",
log => Regex.IsMatch(log, "^(?=10)")); generalDf.CreateOrReplaceTempView("IPLogs"); // Apply UDF to get valid log entries starting with 10
DataFrame ipDf = spark.Sql(
"SELECT iplogs.value FROM IPLogs WHERE IPReg(iplogs.value)");
ipDf.Show(); // Choose valid log entries that start with 10 and deal with spam
spark.Udf().Register<string, bool>(
"SpamRegEx",
log => Regex.IsMatch(log, "\\b(?=spam)\\b")); ipDf.CreateOrReplaceTempView("SpamLogs"); // Apply UDF to get valid, start with 10, spam entries
DataFrame spamDF = spark.Sql(
"SELECT spamlogs.value FROM SpamLogs WHERE SpamRegEx(spamlogs.value)");
int numGetRequests = spamDF
.Collect()
.Where(r => ContainsGet(r.GetAs<string>("value")))
.Count();
// Use regex matching to group data
// Each group matches a column in our log schema
// i.e. first group = first column = IP
public static bool ContainsGet(string logLine)
{
Match match = Regex.Match(logLine, s_apacheRx); // Determine if valid log entry is a GET request
if (match.Success)
{
Console.WriteLine("Full log entry: '{0}'", match.Groups[].Value); // 5th column/group in schema is "method"
if (match.Groups[].Value == "GET")
{
return true;
}
} return false; }
3 运行程序
- –class,用于调用DotnetRunner
- –master, 用于定义是本地还是云端的Spark提交
- Path,Microsoft.Spark jar的路径
- 应用程序的其他参数或依赖项,例如输入文件或包含UDF定义的dll的路径。
spark-submit --class org.apache.spark.deploy.dotnet.DotnetRunner --master local /path/to/microsoft-spark-<version>.jar dotnet /path/to/netcoreapp<version>/LoggingApp.dll
4 .NET for Apache Spark总结
名词解释
Ad-hoc Query
var mySqlQuery = "SELECT * FROM table WHERE id = " + std_name;
每次执行这一条查询的时候返回的结果都可能会不一样,这取决于std_name的值。
原文链接
【译】Using .NET for Apache Spark to Analyze Log Data的更多相关文章
- Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)
文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...
- Using Apache Spark and MySQL for Data Analysis
What is Spark Apache Spark is a cluster computing framework, similar to Apache Hadoop. Wikipedia has ...
- Apache Spark 2.2.0 中文文档
Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 ...
- Apache Spark 2.2.0 中文文档 - Spark 编程指南 | ApacheCN
Spark 编程指南 概述 Spark 依赖 初始化 Spark 使用 Shell 弹性分布式数据集 (RDDs) 并行集合 外部 Datasets(数据集) RDD 操作 基础 传递 Functio ...
- Structured streaming: A Declarative API for Real-Time Applications in Apache Spark(Abstract: 原文+注译)
题目中文:结构化流: Apache spark中,处理实时数据的声明式API Abstract with the ubiquity of real-time data, organizations n ...
- 使用Apache Spark 对 mysql 调优 查询速度提升10倍以上
在这篇文章中我们将讨论如何利用 Apache Spark 来提升 MySQL 的查询性能. 介绍 在我的前一篇文章Apache Spark with MySQL 中介绍了如何利用 Apache Spa ...
- Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...
- Apache Spark 2.2中基于成本的优化器(CBO)(转载)
Apache Spark 2.2最近引入了高级的基于成本的优化器框架用于收集并均衡不同的列数据的统计工作 (例如., 基(cardinality).唯一值的数量.空值.最大最小值.平均/最大长度,等等 ...
- How-to: Tune Your Apache Spark Jobs (Part 1)
Learn techniques for tuning your Apache Spark jobs for optimal efficiency. When you write Apache Spa ...
随机推荐
- matlab创建HDF5文件
一.例子 1.创建写入 testdata = uint8(magic(5)); h5create('my_example.h5','/dataset1',size(testdata)); %创建 h5 ...
- 【WPF学习】第六十七章 创建自定义面板
前面两个章节分别介绍了两个自定义控件:自定义的ColorPicker和FlipPanel控件.接下来介绍派生自定义面板以及构建自定义绘图控件. 创建自定义面板是一种特殊但较常见的自定义控件开发子集.前 ...
- 一年时间,Pipenv就成为Python官方推荐的顶级工具?
Pipenv是Kenneth Reitz在一年多前创建的“面向程序员的Python开发工作流程”,现在已成为管理软件包依赖关系的Python官方推荐资源. Python软件包安装管理的简要历史 为了正 ...
- tensor求和( tensor.sum())
1. torch.sum(input, dim, out=None) 参数说明: input:输入的tensor矩阵. dim:求和的方向.若input为2维tensor矩阵,dim=0,对列求和:d ...
- 前端js传值JSON.stringify(obj)
用bootstrap-talbe前端传值 首先直接传肯定是不行的; 其次做一个全局变量也不行,因为这里的问题的是用bootstrap-table进行生成的操作HTML,从这里datass = row ...
- application/x-www-form-urlencoded ,multipart/form-data, text/plain
APPLICATION/X-WWW-FORM-URLENCODED MULTIPART/FORM-DATA TEXT/PLAIN 后台返回的数据响应的格式类型 application/x-www-fo ...
- 【Python可视化】使用Pyecharts进行奥运会可视化分析~
项目全部代码 & 数据集都可以访问我的KLab --[Pyecharts]奥运会数据集可视化分析-获取,点击Fork即可- 受疫情影响,2020东京奥运会将延期至2021年举行: 虽然延期,但 ...
- NC使用练习之通达OA-2017版本漏洞复现后续
利用上一篇通达OA的漏洞环境,练习NC工具的使用. 步骤: 1.本机启动nc.exe监听端口: 确认端口是否成功监听成功: 2.用冰蝎将nc.exe上传至目标机: 3.用命令行在目标机启动nc.exe ...
- java并发中CountDownLatch的使用
文章目录 主线程等待子线程全都结束之后再开始运行 等待所有线程都准备好再一起执行 停止CountdownLatch的await java并发中CountDownLatch的使用 在java并发中,控制 ...
- 腾讯视频怎么转成mp4模式 软件 工具 方法 最新【已解决】
1.搜索: 小白兔视频格式在线转换 2.转换好后视频已经是MP4格式了. 转载于:https://blog.51cto.com/14204019/2396896