.NET for Spark可用于处理成批数据、实时流、机器学习和ad-hoc查询。在这篇博客文章中,我们将探讨如何使用.NET for Spark执行一个非常流行的大数据任务,即日志分析。

1 什么是日志分析?

    日志分析的目标是从这些日志中获得有关工具或服务的活动和性能的有意义的见解。NET for Spark使我们能够快速高效地分析从兆字节到千兆字节的日志数据!
    在这篇文章中,我们将分析一组Apache日志条目,这些条目表示用户如何与web服务器上的内容交互。您可以在这里查看Apache日志条目的示例。

2 编写一个应用

    日志分析是Spark批量处理的一个例子。批处理是静态数据的转换,意味着源数据已经加载到数据存储中。在我们的例子中,输入文本文件已经填充了日志,并且在处理时不会接收新的或更新的日志。
    在为Spark应用程序创建新的.NET时,我们只需要遵循以下几个步骤,就可以开始从我们的数据中获得这些有趣的见解:

      • 创建Spark会话
      • 读取输入数据,通常使用DataFrame
      • 操作和分析输入数据,通常使用Spark SQL

2.1 创建Spark会话

    在任何Spark应用程序中,我们首先建立一个新的SparkSession,它是使用Spark编程的入口点:

SparkSession spark = SparkSession
.Builder()
.AppName("Apache User Log Processing")
.GetOrCreate();

2.2 读取输入数据

    我们将输入数据存储在DataFrame中,DataFrame是数据的分布式集合,它把数据组织为命名列的集合:

DataFrame generalDf = spark.Read().Text("<path to input data set>");

2.3 操纵和分析输入的数据

    重要的第一步是数据准备。数据准备包括以某种方式清理我们的数据。这可能包括删除不完整的条目以避免以后计算中出现错误,或者删除不相关的输入以提高性能。
    在我们的示例中,我们应该首先确保所有条目都是完整的日志。我们可以通过将每个日志条目与一个正则表达式进行匹配来实现这一点。
string s_apacheRx = "^(\S+) (\S+) (\S+) [([\w:/]+\s[+-]\d{4})] \"(\S+) (\S+) (\S+)\" (\d{3}) (\d+)";

我们如何对DataFrame的每一行执行计算,比如将每个日志条目与上面的s_apacheRx进行匹配?答案是Spark SQL。

2.4 Spark SQL

    Spark SQL为处理DataFrame中存储的结构化数据提供了许多很棒的函数。Spark SQL最流行的特性之一是UDF(用户自定义函数)。我们定义它们接受的输入类型和产生的输出类型,然后定义它们如何执行计算或筛选。
    让我们定义一个新的UDF GeneralReg,将每个日志条目与s_apacheRx 进行匹配。我们的UDF需要一个Apache日志条目,它是一个字符串,并根据日志是否与s_apacheRx匹配返回true或false:

spark.Udf().Register<string, bool>("GeneralReg", log => Regex.IsMatch(log, s_apacheRx));
    除了UDF之外,Spark SQL还提供了编写SQL调用来分析我们的数据的能力,通常编写一个SQL调用来将UDF应用于每一行数据:

DataFrame generalDf = spark.Sql("SELECT logs.value, GeneralReg(logs.value) FROM Logs");
    这个SQL调用测试generalDf的每一行,以确定它是否是一个有效且完整的日志。
    我们可以使用.Filter()只在数据中保留完整的日志条目,然后使用.Show()显示新筛选的DataFrame:

generalDf = generalDf.Filter(generalDf["GeneralReg(value)"]);
generalDf.Show();
    现在我们已经完成了一些初始数据准备,我们可以继续过滤和分析我们的数据。让我们从以10开头的IP地址中查找与垃圾邮件相关的日志条目:

// Choose valid log entries that start with 10
spark.Udf().Register<string, bool>(
"IPReg",
log => Regex.IsMatch(log, "^(?=10)")); generalDf.CreateOrReplaceTempView("IPLogs"); // Apply UDF to get valid log entries starting with 10
DataFrame ipDf = spark.Sql(
"SELECT iplogs.value FROM IPLogs WHERE IPReg(iplogs.value)");
ipDf.Show(); // Choose valid log entries that start with 10 and deal with spam
spark.Udf().Register<string, bool>(
"SpamRegEx",
log => Regex.IsMatch(log, "\\b(?=spam)\\b")); ipDf.CreateOrReplaceTempView("SpamLogs"); // Apply UDF to get valid, start with 10, spam entries
DataFrame spamDF = spark.Sql(
"SELECT spamlogs.value FROM SpamLogs WHERE SpamRegEx(spamlogs.value)");
    最后,让我们计算最后清理的数据集中GET请求的数量。.NET for Spark的神奇之处在于,我们可以将其与其他流行的.NET功能结合起来编写我们的应用程序。我们将使用LINQ分析Spark应用程序中的数据:

int numGetRequests = spamDF
.Collect()
.Where(r => ContainsGet(r.GetAs<string>("value")))
.Count();
    在上面的代码中,ContainsGet()使用regex匹配检查GET请求:

// Use regex matching to group data
// Each group matches a column in our log schema
// i.e. first group = first column = IP
public static bool ContainsGet(string logLine)
{
Match match = Regex.Match(logLine, s_apacheRx); // Determine if valid log entry is a GET request
if (match.Success)
{
Console.WriteLine("Full log entry: '{0}'", match.Groups[].Value); // 5th column/group in schema is "method"
if (match.Groups[].Value == "GET")
{
return true;
}
} return false; }
    作为最后一步,我们调用Spark.Stop()关闭底层的Spark会话和Spark上下文。

3 运行程序

    需要使用spark-submit命令,该命令将提交您的应用程序以便在Apache Spark上运行。
    spark-submit命令包括:
      • –class,用于调用DotnetRunner
      • –master, 用于定义是本地还是云端的Spark提交
      • Path,Microsoft.Spark jar的路径
      • 应用程序的其他参数或依赖项,例如输入文件或包含UDF定义的dll的路径。
    运行应用程序的Windows命令示例如下:

spark-submit --class org.apache.spark.deploy.dotnet.DotnetRunner --master local /path/to/microsoft-spark-<version>.jar dotnet /path/to/netcoreapp<version>/LoggingApp.dll

4 .NET for Apache Spark总结

    这里只是一个简单的介绍,.NET for Apache Spark是一个免费、开源、跨平台的大数据分析框架,更多的功能需要读者进一步深入学习。

名词解释

Ad-hoc Query

    Ad-hoc Query是一种“on-the-fly”的特殊查询。也就是说,在每一个查询操作被执行之前,查询的目标对象是不明确的。
    比如下面这样一条语句:
var mySqlQuery = "SELECT * FROM table WHERE id = " + std_name;

每次执行这一条查询的时候返回的结果都可能会不一样,这取决于std_name的值。

原文链接

【译】Using .NET for Apache Spark to Analyze Log Data的更多相关文章

  1. Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)

    文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...

  2. Using Apache Spark and MySQL for Data Analysis

    What is Spark Apache Spark is a cluster computing framework, similar to Apache Hadoop. Wikipedia has ...

  3. Apache Spark 2.2.0 中文文档

    Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 ...

  4. Apache Spark 2.2.0 中文文档 - Spark 编程指南 | ApacheCN

    Spark 编程指南 概述 Spark 依赖 初始化 Spark 使用 Shell 弹性分布式数据集 (RDDs) 并行集合 外部 Datasets(数据集) RDD 操作 基础 传递 Functio ...

  5. Structured streaming: A Declarative API for Real-Time Applications in Apache Spark(Abstract: 原文+注译)

    题目中文:结构化流: Apache spark中,处理实时数据的声明式API Abstract with the ubiquity of real-time data, organizations n ...

  6. 使用Apache Spark 对 mysql 调优 查询速度提升10倍以上

    在这篇文章中我们将讨论如何利用 Apache Spark 来提升 MySQL 的查询性能. 介绍 在我的前一篇文章Apache Spark with MySQL 中介绍了如何利用 Apache Spa ...

  7. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  8. Apache Spark 2.2中基于成本的优化器(CBO)(转载)

    Apache Spark 2.2最近引入了高级的基于成本的优化器框架用于收集并均衡不同的列数据的统计工作 (例如., 基(cardinality).唯一值的数量.空值.最大最小值.平均/最大长度,等等 ...

  9. How-to: Tune Your Apache Spark Jobs (Part 1)

    Learn techniques for tuning your Apache Spark jobs for optimal efficiency. When you write Apache Spa ...

随机推荐

  1. matlab创建HDF5文件

    一.例子 1.创建写入 testdata = uint8(magic(5)); h5create('my_example.h5','/dataset1',size(testdata)); %创建 h5 ...

  2. 【WPF学习】第六十七章 创建自定义面板

    前面两个章节分别介绍了两个自定义控件:自定义的ColorPicker和FlipPanel控件.接下来介绍派生自定义面板以及构建自定义绘图控件. 创建自定义面板是一种特殊但较常见的自定义控件开发子集.前 ...

  3. 一年时间,Pipenv就成为Python官方推荐的顶级工具?

    Pipenv是Kenneth Reitz在一年多前创建的“面向程序员的Python开发工作流程”,现在已成为管理软件包依赖关系的Python官方推荐资源. Python软件包安装管理的简要历史 为了正 ...

  4. tensor求和( tensor.sum())

    1. torch.sum(input, dim, out=None) 参数说明: input:输入的tensor矩阵. dim:求和的方向.若input为2维tensor矩阵,dim=0,对列求和:d ...

  5. 前端js传值JSON.stringify(obj)

    用bootstrap-talbe前端传值 首先直接传肯定是不行的; 其次做一个全局变量也不行,因为这里的问题的是用bootstrap-table进行生成的操作HTML,从这里datass = row ...

  6. application/x-www-form-urlencoded ,multipart/form-data, text/plain

    APPLICATION/X-WWW-FORM-URLENCODED MULTIPART/FORM-DATA TEXT/PLAIN 后台返回的数据响应的格式类型 application/x-www-fo ...

  7. 【Python可视化】使用Pyecharts进行奥运会可视化分析~

    项目全部代码 & 数据集都可以访问我的KLab --[Pyecharts]奥运会数据集可视化分析-获取,点击Fork即可- 受疫情影响,2020东京奥运会将延期至2021年举行: 虽然延期,但 ...

  8. NC使用练习之通达OA-2017版本漏洞复现后续

    利用上一篇通达OA的漏洞环境,练习NC工具的使用. 步骤: 1.本机启动nc.exe监听端口: 确认端口是否成功监听成功: 2.用冰蝎将nc.exe上传至目标机: 3.用命令行在目标机启动nc.exe ...

  9. java并发中CountDownLatch的使用

    文章目录 主线程等待子线程全都结束之后再开始运行 等待所有线程都准备好再一起执行 停止CountdownLatch的await java并发中CountDownLatch的使用 在java并发中,控制 ...

  10. 腾讯视频怎么转成mp4模式 软件 工具 方法 最新【已解决】

    1.搜索: 小白兔视频格式在线转换 2.转换好后视频已经是MP4格式了. 转载于:https://blog.51cto.com/14204019/2396896