Pytorch的19种损失函数
基本用法
1 |
criterion = LossCriterion() |
损失函数
L1范数损失:L1Loss
计算 output 和 target 之差的绝对值。
1 |
torch.nn.L1Loss(reduction='mean') |
参数:reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
均方误差损失:MSELoss
计算 output 和 target 之差的均方差。
1 |
torch.nn.MSELoss(reduction='mean') |
参数:reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
交叉熵损失:CrossEntropyLoss
当训练有 C 个类别的分类问题时很有效. 可选参数 weight 必须是一个1维 Tensor, 权重将被分配给各个类别. 对于不平衡的训练集非常有效。
在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。所以需要 softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算 loss。
1 |
torch.nn.CrossEntropyLoss(weight=None,ignore_index=-100, reduction='mean') |
参数:weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor。ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度。reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
KL散度损失:KLDivLoss
计算 input 和 target 之间的 KL 散度。KL散度可用于衡量不同的连续分布之间的距离, 在连续的输出分布的空间上(离散采样)上进行直接回归时,很有效。
1 |
torch.nn.KLDivLoss(reduction='mean') |
参数:reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
二进制交叉熵损失:BCELoss
二分类任务时的交叉熵计算函数。用于测量重构的误差,例如自动编码机。注意目标的值 t[i] 的范围为0到1之间。
1 |
torch.nn.BCELoss(weight=None, reduction='mean') |
参数:weight(Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重。必须是一个长度为 “nbatch” 的 Tensor。
BCEWithLogitsLoss
BCEWithLogitsLoss损失函数把 Sigmoid 层集成到了 BCELoss 类中。该版比用一个简单的 Sigmoid 层和 BCELoss 在数值上更稳定, 因为把这两个操作合并为一个层之后, 可以利用 log-sum-exp 的技巧来实现数值稳定。
1 |
torch.nn.BCEWithLogitsLoss(weight=None, reduction='mean', pos_weight=None) |
参数:weight(Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重。必须是一个长度为 “nbatch” 的 Tensor。
MarginRankingLoss
1 |
torch.nn.MarginRankingLoss(margin=0.0, reduction='mean') |
对于 mini-batch(小批量) 中每个实例的损失函数如下:
参数:margin:默认值 0。
HingeEmbeddingLoss
1 |
torch.nn.HingeEmbeddingLoss(margin=1.0, reduction='mean') |
对于 mini-batch(小批量) 中每个实例的损失函数如下:
参数:margin:默认值 1。
多标签分类损失:MultiLabelMarginLoss
1 |
torch.nn.MultiLabelMarginLoss(reduction='mean') |
对于mini-batch(小批量) 中的每个样本按如下公式计算损失:
大专栏 Pytorch的19种损失函数 class="headerlink" title="平滑版L1损失:SmoothL1Loss">平滑版L1损失:SmoothL1Loss
也被称为 Huber 损失函数。
1 |
torch.nn.SmoothL1Loss(reduction='mean') |
其中,
2分类的logistic损失:SoftMarginLoss
1 |
torch.nn.SoftMarginLoss(reduction='mean') |
多标签 one-versus-all 损失:MultiLabelSoftMarginLoss
1 |
torch.nn.MultiLabelSoftMarginLoss(weight=None, reduction='mean') |
cosine 损失:CosineEmbeddingLoss
1 |
torch.nn.CosineEmbeddingLoss(margin=0.0, reduction='mean') |
参数:margin:默认值 0。
多类别分类的hinge损失:MultiMarginLoss
1 |
torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None, reduction='mean') |
参数:p=1 或者 2,默认值:1。margin:默认值为 1。
三元组损失:TripletMarginLoss
和孪生网络相似,具体例子:给一个A,然后再给B、C,看看B、C谁和A更像。
1 |
torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, reduction='mean') |
其中,
连接时序分类损失:CTCLoss
CTC连接时序分类损失,可以对没有对齐的数据进行自动对齐,主要用在没有事先对齐的序列化数据训练上。比如语音识别、ocr识别等等。
1 |
torch.nn.CTCLoss(blank=0, reduction='mean') |
参数:reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
负对数似然损失:NLLLoss
负对数似然损失。用于训练 C 个类别的分类问题。
1 |
torch.nn.NLLLoss(weight=None, ignore_index=-100, reduction='mean') |
参数:weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor。ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度。
NLLLoss2d
对于图片输入的负对数似然损失。它计算每个像素的负对数似然损失。
1 |
torch.nn.NLLLoss2d(weight=None, ignore_index=-100, reduction='mean') |
参数:
weight(Tensor, optional) – 自定义的每个类别的权重。必须是一个长度为 C 的 Tensor。
reduction – 三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
PoissonNLLLoss
目标值为泊松分布的负对数似然损失。
1 |
torch.nn.PoissonNLLLoss(log_input=True, full=False, eps=1e-08, reduction='mean') |
参数:
log_input (bool, optional) – 如果设置为 True , loss 将会按照公 式 exp(input) - target input 来计算, 如果设置为 False , loss 将会按照 input - target log(input+eps) 计算。
full (bool, optional) – 是否计算全部的 loss, i. e. 加上 Stirling 近似项 target log(target) - target + 0.5 log(2 pi target)。
eps (float, optional) – 默认值: 1e-8。
Pytorch的19种损失函数的更多相关文章
- PyTorch的十七个损失函数
本文截取自<PyTorch 模型训练实用教程>,获取全文pdf请点击: tensor-yu/PyTorch_Tutorialgithub.com 版权声明:本文为博主原创文章,转载请附上 ...
- 入口点函数的19种消息,AcRxArxApp只处理16种。
AcRx::AppMsgCode一共有19种消息. 但由IMPLEMENT_ARX_ENTRYPOINT宏实现的App类,只处理了16种消息. 缺: kSuspendMsg = 16, kIni ...
- 用19种编程语言写Hello World
用19种编程语言写Hello World 转载自:http://www.admin10000.com/document/394.html Hello World 程序是每一种编程语言最基本的程序,通常 ...
- 如今领占主导地位的19种AI技术!
如今领占主导地位的19种AI技术! http://blog.itpub.net/31542119/viewspace-2212797/ 深度学习的突破将人工智能带进全新阶段. 2006 年-2015 ...
- lr中错误解决方法19种
一.Error -27727: Step download timeout (120 seconds)has expired when downloading resource(s). Set the ...
- pytorch自定义网络层以及损失函数
转自:https://blog.csdn.net/dss_dssssd/article/details/82977170 https://blog.csdn.net/dss_dssssd/articl ...
- 【小白学PyTorch】19 TF2模型的存储与载入
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...
- pytorch(16)损失函数(二)
5和6是在数据回归中用的较多的损失函数 5. nn.L1Loss 功能:计算inputs与target之差的绝对值 代码: nn.L1Loss(reduction='mean') 公式: \[l_n ...
- pytorch(15)损失函数
损失函数 1. 损失函数概念 损失函数:衡量模型输出与真实标签的差异 \[损失函数(Loss Function): Loss = f(\hat y,y) \] \[代价函数(Cost Function ...
随机推荐
- 【LeetCode】最长公共子序列
[问题]给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共子串,并返回其长度.例如:A = "HelloWorld"B = "loop"则A与B的最 ...
- linux服务重启命令
/etc/init.d/sshd restart/etc/init.d/sshd reload systemctl status sshd.servicesystemctl restart sshd. ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 修饰符类型
C++ 允许在 char.int 和 double 数据类型前放置修饰符.修饰符用于改变基本类型的含义,所以它更能满足各种情境的需求. 下面列出了数据类型修饰符: signed unsigned lo ...
- Multiarmed Bandit Algorithm在股票中的应用
股票与Bandit Machine看起来相去甚远,但实际上通过限制买入和卖出的行为,股票可以转换为Bandit Machine,比如:规定股票必须在买入一天以后卖出.为什么要大费周折地把股票变成Ban ...
- Linux学习打卡20200214
- UVA 11584 入门DP
一开始把它当成暴力来做了,即,从终点开始,枚举其最长的回文串,一旦是最长的,马上就ans++,再计算另外的部分...结果WA了 事实证明就是一个简单DP,算出两个两个点组成的线段是否为回文,再用LCS ...
- 201712-1 最小差值 Java
思路: 也可以不排序,最后用abs就行 import java.util.Arrays; import java.util.Scanner; public class Main { public st ...
- SQL基础教程(第2版)第5章 复杂查询:5-1 视图和表
本章将以此前学过的SELECT语句,以及嵌套在SELECT语句中的视图和子查询等技术为中心进行学习.由于视图和子查询可以像表一样进行使用,因此如果能恰当地使用这些技术,就可以写出更加灵活的 SQL 了 ...
- Git 报错:Updates were rejected because the tip of your current branch is behind
刚开始学习 git 命令,发现会出现很多的错误,所以就总结下出现的错误,以此来加深理解和掌握吧! 环境:在本地库操作了一系列的 add 和 commit 操作后,想把本地仓库推送到远端,但是发生以下错 ...
- [RoarCTF 2019]Easy Java
0x01知识点: WEB-INF/web.xml泄露 WEB-INF主要包含一下文件或目录: /WEB-INF/web.xml:Web应用程序配置文件,描述了 servlet 和其他的应用组件配置及命 ...