前置条件

  • 用户有查询数据统计权限
GRANT VIEW DATABASE STATE TO database_user;

CPU性能问题

正在发生

  • 查看前X个CPU消耗查询 (汇总)
SELECT TOP 10 GETDATE() runtime, * FROM (
SELECT query_stats.query_hash,
SUM (query_stats.cpu_time) 'Total_Request_Cpu_Time_Ms',
SUM (logical_reads) 'Total_Request_Logical_Reads',
MIN (start_time) 'Earliest_Request_start_Time',
COUNT (*) 'Number_Of_Requests',
SUBSTRING (REPLACE(REPLACE(MIN (query_stats.statement_text),CHAR (10),' '),CHAR (13),' '),1,256) AS "Statement_Text" FROM (
SELECT req.*,
SUBSTRING (ST.text,(req.statement_start_offset /2)+1,((CASE statement_end_offset WHEN-1 THEN DATALENGTH(ST.text) ELSE req.statement_end_offset END-req.statement_start_offset)/2)+1) AS statement_text
FROM sys.dm_exec_requests AS req CROSS APPLY sys.dm_exec_sql_text (req.sql_handle) AS ST) AS query_stats
GROUP BY query_hash) AS t
ORDER BY Total_Request_Cpu_Time_Ms DESC;
  • 查看前X个CPU消耗查询(按会话)
PRINT '--top 10 Active CPU Consuming Queries by sessions--';
SELECT TOP 10 req.session_id,req.start_time,cpu_time 'cpu_time_ms',OBJECT_NAME(ST.objectid,ST.dbid) 'ObjectName',
SUBSTRING (REPLACE(REPLACE(SUBSTRING (ST.text,(req.statement_start_offset /2)+1,((CASE statement_end_offset WHEN-1 THEN DATALENGTH(ST.text) ELSE req.statement_end_offset END-req.statement_start_offset)/2)+1),CHAR (10),' '),CHAR (13),' '),1,512) AS statement_text
FROM sys.dm_exec_requests AS req CROSS APPLY sys.dm_exec_sql_text (req.sql_handle) AS ST
ORDER BY cpu_time DESC;
GO

历史发生

  • 统计某个时间段内前X CPU耗时查询
DECLARE @nums int = 15;
DECLARE @beginTime datetime2 = DATEADD(DAY, -1,GETUTCDATE());
DECLARE @endTime datetime2 = GETUTCDATE(); WITH AggregatedCPU AS (
SELECT q.query_hash,
SUM (count_executions*avg_cpu_time/1000.0) AS total_cpu_millisec,
SUM (count_executions*avg_cpu_time/1000.0)/SUM (count_executions) AS avg_cpu_millisec,
MAX (rs.max_cpu_time /1000.00) AS max_cpu_millisec,
MAX (max_logical_io_reads) max_logical_reads,
COUNT (DISTINCT p.plan_id) AS number_of_distinct_plans,
COUNT (DISTINCT p.query_id) AS number_of_distinct_query_ids,
SUM (CASE WHEN rs.execution_type_desc='Aborted' THEN count_executions ELSE 0 END) AS Aborted_Execution_Count,
SUM (CASE WHEN rs.execution_type_desc='Regular' THEN count_executions ELSE 0 END) AS Regular_Execution_Count,
SUM (CASE WHEN rs.execution_type_desc='Exception' THEN count_executions ELSE 0 END) AS Exception_Execution_Count,
SUM (count_executions) AS total_executions,MIN (qt.query_sql_text) AS sampled_query_text
FROM sys.query_store_query_text AS qt
JOIN sys.query_store_query AS q ON qt.query_text_id=q.query_text_id
JOIN sys.query_store_plan AS p ON q.query_id=p.query_id JOIN sys.query_store_runtime_stats AS rs ON rs.plan_id=p.plan_id
JOIN sys.query_store_runtime_stats_interval AS rsi ON rsi.runtime_stats_interval_id=rs.runtime_stats_interval_id
WHERE rs.execution_type_desc IN ('Regular','Aborted','Exception') AND rsi.start_time>= @beginTime AND rsi.start_time < @endTime AND count_executions > 1
GROUP BY q.query_hash),OrderedCPU AS (
SELECT query_hash,
total_cpu_millisec,
avg_cpu_millisec,
max_cpu_millisec,
max_logical_reads,
number_of_distinct_plans,
number_of_distinct_query_ids,
total_executions,Aborted_Execution_Count,
Regular_Execution_Count,Exception_Execution_Count,
sampled_query_text,ROW_NUMBER () OVER (ORDER BY total_cpu_millisec DESC,query_hash ASC) AS RN
FROM AggregatedCPU) SELECT OD.query_hash,OD.total_cpu_millisec,OD.avg_cpu_millisec,OD.max_cpu_millisec,OD.max_logical_reads,OD.number_of_distinct_plans,OD.number_of_distinct_query_ids,OD.total_executions,OD.Aborted_Execution_Count,OD.Regular_Execution_Count,OD.Exception_Execution_Count,OD.sampled_query_text,OD.RN
FROM OrderedCPU AS OD
WHERE OD.RN <= @nums
ORDER BY avg_cpu_millisec DESC;

IO性能问题

当前发生

  • 查看一个小时内每15S , IO使用情况
SELECT end_time, avg_data_io_percent, avg_log_write_percent
FROM sys.dm_db_resource_stats
ORDER BY end_time DESC;

历史发生

  • 统计时间段IO等待情况
-- top queries that waited on buffer
-- note these are finished queries
WITH Aggregated AS (SELECT q.query_hash, SUM(total_query_wait_time_ms) total_wait_time_ms, SUM(total_query_wait_time_ms / avg_query_wait_time_ms) AS total_executions, MIN(qt.query_sql_text) AS sampled_query_text, MIN(wait_category_desc) AS wait_category_desc
FROM sys.query_store_query_text AS qt
JOIN sys.query_store_query AS q ON qt.query_text_id=q.query_text_id
JOIN sys.query_store_plan AS p ON q.query_id=p.query_id
JOIN sys.query_store_wait_stats AS waits ON waits.plan_id=p.plan_id
JOIN sys.query_store_runtime_stats_interval AS rsi ON rsi.runtime_stats_interval_id=waits.runtime_stats_interval_id
WHERE wait_category_desc='Buffer IO' AND rsi.start_time>=DATEADD(HOUR, -24, GETUTCDATE())
GROUP BY q.query_hash), Ordered AS (SELECT query_hash, total_executions, total_wait_time_ms, sampled_query_text, wait_category_desc, ROW_NUMBER() OVER (ORDER BY total_wait_time_ms DESC, query_hash ASC) AS RN
FROM Aggregated)
SELECT OD.query_hash, OD.total_executions, OD.total_wait_time_ms, OD.sampled_query_text, OD.wait_category_desc, OD.RN
FROM Ordered AS OD
WHERE OD.RN<=15
ORDER BY total_wait_time_ms DESC;
GO
  • 写入日志最多查询
-- Top transaction log consumers
-- Adjust the time window by changing
-- rsi.start_time >= DATEADD(hour, -24, GETUTCDATE())
WITH AggregatedLogUsed
AS (SELECT q.query_hash,
SUM(count_executions * avg_cpu_time / 1000.0) AS total_cpu_millisec,
SUM(count_executions * avg_cpu_time / 1000.0) / SUM(count_executions) AS avg_cpu_millisec,
SUM(count_executions * avg_log_bytes_used) AS total_log_bytes_used,
MAX(rs.max_cpu_time / 1000.00) AS max_cpu_millisec,
MAX(max_logical_io_reads) max_logical_reads,
COUNT(DISTINCT p.plan_id) AS number_of_distinct_plans,
COUNT(DISTINCT p.query_id) AS number_of_distinct_query_ids,
SUM( CASE
WHEN rs.execution_type_desc = 'Aborted' THEN
count_executions
ELSE
0
END
) AS Aborted_Execution_Count,
SUM( CASE
WHEN rs.execution_type_desc = 'Regular' THEN
count_executions
ELSE
0
END
) AS Regular_Execution_Count,
SUM( CASE
WHEN rs.execution_type_desc = 'Exception' THEN
count_executions
ELSE
0
END
) AS Exception_Execution_Count,
SUM(count_executions) AS total_executions,
MIN(qt.query_sql_text) AS sampled_query_text
FROM sys.query_store_query_text AS qt
JOIN sys.query_store_query AS q
ON qt.query_text_id = q.query_text_id
JOIN sys.query_store_plan AS p
ON q.query_id = p.query_id
JOIN sys.query_store_runtime_stats AS rs
ON rs.plan_id = p.plan_id
JOIN sys.query_store_runtime_stats_interval AS rsi
ON rsi.runtime_stats_interval_id = rs.runtime_stats_interval_id
WHERE rs.execution_type_desc IN ( 'Regular', 'Aborted', 'Exception' )
AND rsi.start_time >= DATEADD(HOUR, -24, GETUTCDATE())
GROUP BY q.query_hash),
OrderedLogUsed
AS (SELECT query_hash,
total_log_bytes_used,
number_of_distinct_plans,
number_of_distinct_query_ids,
total_executions,
Aborted_Execution_Count,
Regular_Execution_Count,
Exception_Execution_Count,
sampled_query_text,
ROW_NUMBER() OVER (ORDER BY total_log_bytes_used DESC, query_hash ASC) AS RN
FROM AggregatedLogUsed)
SELECT OD.total_log_bytes_used,
(OD.total_log_bytes_used / OD.total_executions) avg_log_bytes_used,
OD.number_of_distinct_plans,
OD.number_of_distinct_query_ids,
OD.total_executions,
OD.Aborted_Execution_Count,
OD.Regular_Execution_Count,
OD.Exception_Execution_Count,
OD.sampled_query_text,
OD.RN
FROM OrderedLogUsed AS OD
WHERE OD.RN <= 15
ORDER BY total_log_bytes_used DESC;
GO

连接数查询

SELECT
c.session_id, c.net_transport, c.encrypt_option,
c.auth_scheme, s.host_name, s.program_name,
s.client_interface_name, s.login_name, s.nt_domain,
s.nt_user_name, s.original_login_name, c.connect_time,
s.login_time
FROM sys.dm_exec_connections AS c
JOIN sys.dm_exec_sessions AS s
ON c.session_id = s.session_id
WHERE c.session_id = @@SPID;

服务器使用情况

SELECT
AVG(avg_cpu_percent) AS 'Average CPU use in percent',
MAX(avg_cpu_percent) AS 'Maximum CPU use in percent',
AVG(avg_data_io_percent) AS 'Average data IO in percent',
MAX(avg_data_io_percent) AS 'Maximum data IO in percent',
AVG(avg_log_write_percent) AS 'Average log write use in percent',
MAX(avg_log_write_percent) AS 'Maximum log write use in percent',
AVG(avg_memory_usage_percent) AS 'Average memory use in percent',
MAX(avg_memory_usage_percent) AS 'Maximum memory use in percent'
FROM sys.dm_db_resource_stats;

前X个消耗最多平均CPU时间查询

SELECT TOP 10 query_stats.query_hash AS "Query Hash",
SUM(query_stats.total_worker_time) / SUM(query_stats.execution_count) AS "Avg CPU Time",
MIN(query_stats.statement_text) AS "Statement Text"
FROM
(SELECT QS.*,
SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,
((CASE statement_end_offset
WHEN -1 THEN DATALENGTH(ST.text)
ELSE QS.statement_end_offset END
- QS.statement_start_offset)/2) + 1) AS statement_text
FROM sys.dm_exec_query_stats AS QS
CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) as ST) as query_stats
GROUP BY query_stats.query_hash
ORDER BY 2 DESC;

转载请标明出处 : https://www.cnblogs.com/WilsonPan/p/13153400.html

【Azure SQL】数据库性能分析的更多相关文章

  1. Azure SQL 数据库与新的数据库吞吐量单位

    在这一期中,Scott 与 Azure SQL 数据库性能首席项目经理主管 Tobias Ternstrom 一起详细阐释了新的数据库吞吐量单位 (Database Throughput Unit, ...

  2. Azure SQL 数据库:服务级别与性能问答

    ShawnBice    2014 年 5 月 5 日上午 10:00 几天前,我发表了一篇文章,并就 4 月 24 日发布的适用于Windows Azure SQL 数据库的新服务级别提供了一些预料 ...

  3. 新 Azure SQL 数据库服务等级的性能

    4 月 24 日,我们发布了 SQL Database 基本级(预览版)和标准级(预览版)新服务等级的预览版以及新的业务连续性功能.在本博客文章中,我们将深入探究 SQL Database 中新等级的 ...

  4. Azure SQL 数据库弹性池现已面市

    我们高兴地宣布Azure SQL 数据库弹性池现已正式面市.弹性池自去年试运行以来,得到许多软件即服务(SaaS)供应商和企业开发人员的认可,他们利用弹性池管理持续增长的云数据库和应用程序,成果高效. ...

  5. Azure SQL 数据库:新服务级别问答

    ShawnBice   2014 年 5 月 1 日上午 11:10 本月初,我们庆祝了SQL Server 2014 的推出,并宣布正式发布分析平台系统,同时分享了智能系统服务预览版.Quentin ...

  6. Azure SQL 数据库新服务级别现已正式发布

    T.K.Ranga Rengarajan   2014 年 9 月 10 日上午 11:00 我们很高兴地宣布,新的 SQL 数据库服务级被基本.标准和高级级别现已正式发布.这些服务级别中含有内置且可 ...

  7. 价格更低、SLA 更强的全新 Azure SQL 数据库服务等级将于 9 月正式发布

    继上周公告之后,很高兴向大家宣布更多好消息,作为我们更广泛的数据平台的一部分, 我们将在 Azure 上提供丰富的在线数据服务.9 月,我们将针对 Azure SQL 数据库推出新的服务等级.Azur ...

  8. Azure SQL 数据库引入了新的服务级别

     新的级别将提升客户体验,并提供更多的业务连续性选项 为了更好地满足您在灵活性提升方面的需求,MicrosoftAzure SQL 数据库添加了新的服务级别(基础级和标准级),以与当前处于预览状态 ...

  9. Azure SQL 数据库仓库Data Warehouse (3) DWU

    <Windows Azure Platform 系列文章目录> 在笔者的上一篇文章中:Azure SQL 数据库仓库Data Warehouse (2) 架构 介绍了SQL DW的工作节点 ...

  10. [AWS vs Azure] 云计算里AWS和Azure的探究(5) ——EC2和Azure VM磁盘性能分析

    云计算里AWS和Azure的探究(5) ——EC2和Azure VM磁盘性能分析 在虚拟机创建完成之后,CPU和内存的配置等等基本上是一目了然的.如果不考虑显卡性能,一台机器最重要的性能瓶颈就是硬盘. ...

随机推荐

  1. Java-main方法中调用非static方法

    java的calss中,在public static void main(String[] args) { }方法中调用非static的方法:在main方法中创建该calss的对象,用对象调用非sta ...

  2. PHP目录操作函数汇总

    一.判断普通文件和目录    1.is_file()//判断给定文件名是否为一个正常的文件    2.is_dir()//判断给定文件名是否是一个目录二.文件的属性    1.file_exists( ...

  3. PHP文件目录操作

    目录操作 is_dir ( $path ) 判断当前路径是否为目录 ,返回布尔 opendir ( $path ) 打开路径目录,返回资源 readdir ( $handle ) 读取当前打开目录下一 ...

  4. Java8中的Lambda表达式

    Lambda是什么 Lambda表达式,也可称为闭包,是java8的新特性,作用是取代大部分内部类,优化java代码结构,让代码变得更加简洁紧凑. Lambda的基本语法 (expression)-& ...

  5. Java集合(十)实现Map接口的HashMap

    Java集合(十)继承Map接口的HashMap 一.HashMap简介(基于JDK1.8) HashMap是基于哈希表(散列表),实现Map接口的双列集合,数据结构是“链表散列”,也就是数组+链表 ...

  6. CNN卷积神经网络的卷积层、池化层的输出维度计算公式

    卷积层Conv的输入:高为h.宽为w,卷积核的长宽均为kernel,填充为pad,步长为Stride(长宽可不同,分别计算即可),则卷积层的输出维度为: 其中上开下闭开中括号表示向下取整. MaxPo ...

  7. Pytorch写CNN

    用Pytorch写了两个CNN网络,数据集用的是FashionMNIST.其中CNN_1只有一个卷积层.一个全连接层,CNN_2有两个卷积层.一个全连接层,但训练完之后的准确率两者差不多,且CNN_1 ...

  8. [Python3]踩坑实录-优化技巧1

    选择合适的数据结构 考虑不同的应用场景,应选择不同的数据结构 比如在查找多于插入的场景中,考虑字典Dict是不是更适合; 因为在Python3中, 字典Dict 通过hash把key映射到hash t ...

  9. 关于ueditor编译器

    取消自动保存提示.edui-editor-messageholder.edui-default{ visibility:hidden;} Qiyuwen 1033935470@qq.com

  10. [C#.NET拾遗补漏]01:字符串操作

    字符串操作在任意编程语言的日常编程中都随处可见,今天来汇总一下 C# 中关于字符串的一些你可能遗忘或遗漏的知识点. 逐字字符串 在普通字符串中,反斜杠字符是转义字符.而在逐字字符串(Verbatim ...