Loj #2542. 「PKUWC2018」随机游走

题目描述

给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去。

有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步。

特别地,点 \(x\)(即起点)视为一开始就被经过了一次。

答案对 $998244353 $ 取模。

输入格式

第一行三个正整数 \(n,Q,x\)。

接下来 \(n-1\) 行,每行两个正整数 \((u,v)\) 描述一条树边。

接下来 \(Q\) 行,每行第一个数 \(k\) 表示集合大小,接下来 \(k\) 个互不相同的数表示集合 \(S\)。

输出格式

输出 \(Q\) 行,每行一个非负整数表示答案。

数据范围与提示

对于 \(20\%\) 的数据,有 \(1\leq n,Q\leq 5\)。

另有 \(10\%\) 的数据,满足给定的树是一条链。

另有 \(10\%\) 的数据,满足对于所有询问有 \(k=1\)。

另有 \(30\%\) 的数据,满足 \(1\leq n\leq 10 ,Q=1\)。

对于 \(100\%\) 的数据,有 \(1\leq n\leq 18\),\(1\leq Q\leq 5000\),\(1\leq k\leq n\)。

Orz

首先根据\(\min-\max\) 反演我们知道:

\[\max(S)=\sum_{T\subseteq S}(-1)^{|T|-1}\min(T)
\]

设\(f_{v,S}\)表示从\(v\)出发,经过\(S\)中至少一个节点的期望步数。

如果\(v\in S\),\(f_{v,S}=0\),否则:

\[f_v=1+\frac{1}{d_v}f_{fa}+\frac{1}{d_v}\sum f(u)\\
\]

然后这是颗树,我们可以将\(DP\)方程移项变成只与\(fa\)的\(f\)值个一个常数有关。

设:

\[f(v)=A_v*f_{fa}+B_v\\
\]

带回去化简:

\[f_v=1+\frac{1}{d_v}f_{fa}+\frac{1}{d_v}\sum (A_u*f_v+B_u)\\
(d_v-\sum A_u)*f_v=d_v+f_{fa}+\sum B_u\\
f_v=\frac{1}{d_v-\sum A_u}*f_{fa}+\frac{d_v+\sum B_u}{d_v-\sum A_u}
\]

得到:

\[A_v=\frac{1}{d_v-\sum A_u},B_v=\frac{d_v+\sum B_u}{d_v-\sum A_u}
\]

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 19 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} const ll mod=998244353;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
} int n;
int X,m;
struct road {int to,nxt;}s[N<<1];
int h[N],cnt;
void add(int i,int j) {s[++cnt]=(road) {j,h[i]};h[i]=cnt;} ll w[N];
int d[N];
ll A[N],B[N],f[N];
int tag[N]; void dfs(int v,int fa) {
A[v]=B[v]=0;
ll sumA=0,sumB=0;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fa) continue ;
dfs(to,v);
sumA=(sumA+A[to])%mod;
sumB=(sumB+B[to])%mod;
}
if(tag[v]) A[v]=B[v]=0;
else A[v]=ksm(d[v]-sumA+mod,mod-2),B[v]=(d[v]+sumB)*ksm(d[v]-sumA+mod,mod-2)%mod;
} void dfs2(int v,int fa) {
f[v]=(A[v]*f[fa]+B[v])%mod;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fa) continue ;
dfs2(to,v);
}
}
int mn[1<<N];
int main() {
n=Get(),m=Get(),X=Get();
int a,b;
for(int i=1;i<n;i++) {
a=Get(),b=Get();
add(a,b),add(b,a);
d[a]++,d[b]++;
}
for(int S=1;S<1<<n;S++) {
for(int i=1;i<=n;i++) if(S>>i-1&1) tag[i]=1;
dfs(1,0),dfs2(1,0);
mn[S]=f[X];
for(int i=1;i<=n;i++) if(S>>i-1&1) tag[i]=0;
}
for(int S=1;S<1<<n;S++) {
int cnt=0;
for(int i=0;i<n;i++) cnt+=S>>i&1;
if(!(cnt&1)) mn[S]=(mod-mn[S])%mod;
}
for(int i=0;i<n;i++) {
for(int S=1;S<1<<n;S++) {
if(S>>i&1) mn[S]=(mn[S]+mn[S^(1<<i)]+mod)%mod;
}
}
while(m--) {
int k=Get();
int sta=0;
while(k--) sta|=1<<Get()-1;
cout<<mn[sta]<<"\n";
}
return 0;
}

Loj #2542. 「PKUWC2018」随机游走的更多相关文章

  1. LOJ #2542「PKUWC2018」随机游走

    $ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...

  2. loj#2542. 「PKUWC2018」随机游走(树形dp+Min-Max容斥)

    传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到 ...

  3. LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt

    题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...

  4. loj#2542. 「PKUWC2018」随机游走(MinMax容斥 期望dp)

    题意 题目链接 Sol 考虑直接对询问的集合做MinMax容斥 设\(f[i][sta]\)表示从\(i\)到集合\(sta\)中任意一点的最小期望步数 按照树上高斯消元的套路,我们可以把转移写成\( ...

  5. 【LOJ】#2542. 「PKUWC2018」随机游走

    题解 虽然我知道minmax容斥,但是--神仙能想到把这个dp转化成一个一次函数啊= = 我们相当于求给定的\(S\)集合里最后一个被访问到的点的时间,对于这样的max的问题,我们可以用容斥把它转化成 ...

  6. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  7. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  8. 「PKUWC2018」随机游走

    题目 我暴力过啦 看到这样的东西我们先搬出来\(min-max\)容斥 我们设\(max(S)\)表示\(x\)到达点集\(S\)的期望最晚时间,也就是我们要求的答案了 显然我们也很难求出这个东西,但 ...

  9. loj2542「PKUWC2018」随机游走

    题目描述 给定一棵 nn 个结点的树,你从点 xx 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 QQ 次询问,每次询问给定一个集合 SS,求如果从 xx 出发一直随机游走,直到点集 SS ...

随机推荐

  1. SqlServer中用SQL语句附加数据库及修改数据库逻辑文件名

    --查询数据库逻辑文件名 USE 数据库名 SELECT FILE_NAME(1) --查询数据库逻辑文件名(日志) USE 数据库名 SELECT FILE_NAME(2) --附加数据库 sp_a ...

  2. 解决 win10飞行模式 无限自动开关 无法关闭

    驱动问题,名为“Insyde Airplane Mode HID Mini-Driver”的驱动,这个驱动是专门用来快捷管理飞行模式的. 卸载完成后重启,无限开关飞行模式问题得到解决!

  3. RFID和QRCODE对比

    1.技术介绍 1.1 RFID 射频识别,RFID(Radio Frequency Identification)技术,又称无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而 ...

  4. 人生路上对我影响最大的三位老师&&浅谈师生关系

    三位老师分别是父母,初升高的罗老师,高考前的谭老师 很小的时候,就是父母引导我学习的,并且在我失去学习信心的时候给我鼓励以及骄傲事的压力,使得我小学打下了不错的基础. 到了初中,成绩慢慢变差,初三勉强 ...

  5. hexo 报错 Cannot read property 'replace' of null

    详细错误信息: FATAL Cannot read property 'replace' of null TypeError: Cannot read property 'replace' of nu ...

  6. LOJ #6060. 「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set

    有趣的思博套路题,想到了基本上加上个对线性基的理解就可以过了 首先考虑到这个把数分成两半的分别异或的过程不会改变某一位上\(1\)的总个数 因此我们求出所有数的\(\operatorname{xor} ...

  7. Web地图呈现原理

    地图投影 对于接触互联网地图的同学来说,最开始接触的恐怕就是坐标转换的过程了.由于地球是个近似椭球的形状,有各种各样的椭球模型来模拟地球,最著名的也就是GPS系统使用的WGS84椭球了.但是这些椭球体 ...

  8. .NET Core TDD 前传: 编写易于测试的代码 -- 全局状态

    第1篇: 讲述了如何创造"缝".  "缝"(seam)是需要知道的概念. 第2篇, 避免在构建对象时写出不易测试的代码. 第3篇, 依赖项和迪米特法则. 本文是 ...

  9. 禁用 Chrome 的黑色模式/Dark Mode

    macOS Mojave 中引入了系统层面的黑色模式,Chrome 73 在应用中支行了这一模式,即系统设置为黑色模式时,Chrome 会自动适应切换到 Dark Mode. Chrome 跟随系统设 ...

  10. docker~docker-compose的使用

    回到目录 docker-compose是用来在Docker中定义和运行复杂应用的工具,比如在一个yum文件里定义多个容器,只用一行命令就可以让一切就绪并运行. 使用docker compose我们可以 ...