我发现当参数并不太多时,从性能的角度来看,没必要用一个class来保存参数(虽然看起来更加生动形象),直接用最简单的元组就可以了.

from hanoi import *
# example trees for test...
trees=[]
trees.append(None)
trees.append([1,None,None])
trees.append([1,None,[2,None,None]])
trees.append([1,[3,[4,None,None],None],[600,None,None]])
trees.append([1,[3,[4,None,None],[6,None,None]],[2,[5,None,None],[7,None,None]]])
trees.append([10,[6,[8,None,None],[12,None,None]],[11,None,[15,None,None]]])
trees.append([10,[6,[8,[11,None,[15,None,None]],None],[12,None,None]],[10,[6,[8,None,None],[12,None,None]],[11,None,[15,None,None]]]]) # helper functions to build a valid preorder or inorder list from a tree
def _pre(tree):
if tree:
yield tree[0]
yield from _pre(tree[1])
yield from _pre(tree[2])
def _ino(tree):
if tree:
yield from _ino(tree[1])
yield tree[0]
yield from _ino(tree[2])
def pre(tree):
return list(_pre(tree))
def ino(tree):
return list(_ino(tree)) def make(prd,ind):
if prd and ind:
root = prd[0]
root_pos = ind.index(root)
ind_left= ind[:root_pos]
ind_right = ind[root_pos+1:]
cut = len(ind_left)+1
prd_left = prd[1:cut]
prd_right = prd[cut:]
left = make(prd_left,ind_left)
right = make(prd_right,ind_right)
return [root,left,right] def xmake(prd,ind):
stacks=[Stack(stg=0,prd=prd,ind=ind)]
while stacks:
c = stacks.pop()
if c.stg==0:
c.stg=1
if c.prd and c.ind:
root=c.prd[0]
c.tree_list=[root]
root_pos = c.ind.index(root)
ind_left = c.ind[:root_pos]
cut = len(ind_left)+1
prd_left = c.prd[1:cut]
c.ind_right = c.ind[root_pos+1:]
c.prd_right = c.prd[cut:]
stacks.append(c)
stacks.append(Stack(stg=0,prd=prd_left,ind=ind_left))
else:
res = None
elif c.stg==1:
c.stg=2
c.tree_list.append(res)
stacks.append(c)
stacks.append(Stack(stg=0,prd=c.prd_right,ind=c.ind_right))
elif c.stg==2:
c.tree_list.append(res)
res=c.tree_list
return res def ymake(prd,ind):
stacks=[(0,prd,ind,None,None,None,)]
while stacks:
stg,prd,ind,tree_list,prd_right,ind_right = stacks.pop()
if stg==0:
if prd and ind:
root=prd[0]
tree_list=[root]
root_pos = ind.index(root)
ind_left = ind[:root_pos]
cut = len(ind_left)+1
prd_left = prd[1:cut]
ind_right = ind[root_pos+1:]
prd_right = prd[cut:]
stacks.append((1,None,None,tree_list,prd_right,ind_right,))
stacks.append((0,prd_left,ind_left,None,None,None,))
else:
res = None
elif stg==1:
tree_list.append(res)
stacks.append((2,None,None,tree_list,None,None,))
stacks.append((0,prd_right,ind_right,None,None,None,))
elif stg==2:
tree_list.append(res)
res=tree_list
return res if __name__=='__main__':
for tree in trees:
preorder = pre(tree)
inorder = ino(tree)
compare(1,10000,make,xmake,ymake,prd=preorder,ind=inorder)

时间消耗情况"

>>>
1 groups, 10000 times
make best time: 0.005802598746597618
xmake best time: 0.040378714824230735
ymake best time: 0.010430907850763435
1 groups, 10000 times
make best time: 0.023853132543773928
xmake best time: 0.15266406806261454
ymake best time: 0.06813018108264718
1 groups, 10000 times
make best time: 0.061869156080883114
xmake best time: 0.29423481944120744
ymake best time: 0.14889103182256502
1 groups, 10000 times
make best time: 0.09127643060422885
xmake best time: 0.4971307733591055
ymake best time: 0.22370901906617036
1 groups, 10000 times
make best time: 0.15408382101704765
xmake best time: 0.8039180049905172
ymake best time: 0.37127052922146664
1 groups, 10000 times
make best time: 0.1331591427600083
xmake best time: 0.6996409992152874
ymake best time: 0.32450677483017465
1 groups, 10000 times
make best time: 0.2689833157646033
xmake best time: 1.3633301759510097
ymake best time: 0.6343635807709003

不规则递归转换为while,留底的更多相关文章

  1. 记住经典的斐波拉契递归和阶乘递归转换为while规律

    记住经典的斐波拉契递归和阶乘递归转换为while规律.它为实现更复杂转换提供了启发性思路. # 斐波拉契--树形递归 def fab(n): if n<3: return n return fa ...

  2. 一个貌似比较吊的递归转换为loop--总算成功了.--第二弹

    前段时间用类似于散弹式编程的方式,各种猜测-运行验证-修正结果,最终成功转换了一个看起来比较有难度的递归函数.但总觉得很蛋疼,原因如下: 1.虽然正确,但是逻辑搞得比较复杂.现在去看,一头雾水,不知道 ...

  3. 将树形递归转换为loop

    class Stack(object): def __init__(self,**kwargs): self.__dict__.update(kwargs) def __str__(self): re ...

  4. 一个貌似比较吊的递归转换为loop--总算成功了.

    class Stack(object): """ A class to hold arguements and state data. """ ...

  5. 数据结构笔记01:编程面试过程中常见的10大算法(java)

    以下是在编程面试中排名前10的算法相关的概念,我会通过一些简单的例子来阐述这些概念.由于完全掌握这些概念需要更多的努力,因此这份列表只是作为一个介绍.本文将从Java的角度看问题,包含下面的这些概念: ...

  6. JavaScript 开发总结(一)

    数据类型:JavaScript定义的数据类型有字符串.数字.布尔.数组.对象.Null.Undefined,但typeof有区分可判别的数据分类是number.string.boolean.objec ...

  7. python 排序算法

    冒泡排序: 一. 冒泡排序的定义 冒泡排序(英语:Bubble Sort)是一种简单的排序算法.它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.遍历数列的工作是重复地进 ...

  8. Java 算法 概念汇总

    编程面试的10大算法概念汇总   以下是在编程面试中排名前10的算法相关的概念,我会通过一些简单的例子来阐述这些概念.由于完全掌握这些概念需要更多的努力,因此这份列表只是作为一个介绍.本文将从Java ...

  9. 面试10大算法汇总——Java篇

    问题导读 1 字符串和数组 2 链表 3 树 4 图 5 排序 6 递归 vs 迭代 7 动态规划 8 位操作 9 概率问题 10 排列组合 11 其他 -- 寻找规律 英文版 以下从Java角度解释 ...

随机推荐

  1. svg param.js的大bug

    在svg文件里定义控件,带参数,然后引用. 如果是 text 且没有为其它添加默认值,那么会报错. 即, <svg width="200" height="200& ...

  2. [LeetCode] Delete and Earn 删除与赚取

    Given an array nums of integers, you can perform operations on the array. In each operation, you pic ...

  3. [CTSC 1999]拯救大兵瑞恩&[网络流24题]孤岛营救问题

    Description $1944$ 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂,但幸好麦克得到了迷宫的地形图.迷宫 ...

  4. [HNOI 2008]玩具装箱

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  5. ●洛谷P3688 [ZJOI2017]树状数组

    题链: https://www.luogu.org/problemnew/show/P3688题解: 二维线段树. 先不看询问时l=1的特殊情况. 对于一个询问(l,r),如果要让错误的程序得到正确答 ...

  6. hdu 3308 最长连续上升区间

    LCIS Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  7. [bzoj3673/3674可持久化并查集加强版]

    n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0<n,m<=2 ...

  8. Thinkphp中的U函数(Thinkphp3.2.3版本)

    U函数的作用是根据当前的URL设置生成对应的URL地址,使用U函数可以确保项目在移植过程中不受环境的影响. U方法的定义规则如下(方括号内参数根据实际应用决定): U('地址表达式',['参数'],[ ...

  9. EtherChannel(PAgP、LACP)基本配置--端口聚合--(转)

    转自 http://blog.sina.com.cn/s/blog_635e1a9e01017msv.html EtherChannel EtherChannel(以太通道)也叫端口聚合或链路聚合,特 ...

  10. String 类

    一.String类String类在java.lang包中,java使用String类创建一个字符串变量,字符串变量属于对象.java把String类声明的final类,不能有类.String类对象创建 ...