UVa - 116 - Unidirectional TSP
Background
Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson
Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time
to generate, but are simple to check.
This problem deals with finding a minimal path through a grid of points while traveling only from left to right.
The Problem
Given an
matrix of integers, you are to write a program that computes a path of
minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal
or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.
For example, two slightly different
matrices are shown below (the only difference
is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.
The Input
The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by
integers
where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second
row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.
For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.
The Output
Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of nintegers
(separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.
Sample Input
5 6 3 4 1 2 8 6 6 1 8 2 7 4 5 9 3 9 9 5 8 4 1 3 2 6 3 7 2 8 6 4 5 6 3 4 1 2 8 6 6 1 8 2 7 4 5 9 3 9 9 5 8 4 1 3 2 6 3 7 2 1 2 3 2 2 9 10 9 10
Sample Output
1 2 3 4 4 5 16 1 2 1 5 4 5 11 1 1 19
动态规划问题,倒着找一遍即可,不过这个要输出结果,所以需要记录下结果。不过AC了之后等级不高,速度稍慢。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>
using namespace std;
const int maxm = 12;
const int maxn = 105;
const int inf = 0x3f3f3f3f;
int matrix[maxm][maxn], nextLine[maxm][maxn];
int d[maxm][maxn]; // d[i][j]表示从格子(i, j)出发到最后一列的最小开销
int m, n;
void init()
{
cin >> n;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
cin >> matrix[i][j];
}
}
}
// 动态规划。。。
void solve()
{
int ans = inf, first = 0;
for (int j = n - 1; j >= 0; j--) { // 逆推
for (int i = 0; i < m; i++) {
if (j == n - 1) { // 边界
d[i][j] = matrix[i][j];
}
else {
int row[3] = { i, i - 1, i + 1 };
if (i == 0) {
row[1] = m - 1; // 第0行上面是第m-1行
}
if (i == m - 1) {
row[2] = 0; // 第m-1行下面是第0行
}
sort(row, row + 3); // 重排序是为了得到字典序最小的
d[i][j] = inf;
for (int k = 0; k < 3; k++) { // 向左走,判断那个比较小
int v = d[row[k]][j + 1] + matrix[i][j];
if (v < d[i][j]) {
d[i][j] = v;
nextLine[i][j] = row[k];
}
}
}
if (j == 0 && d[i][j] < ans) {
ans = d[i][j];
first = i;
}
}
}
// 输出
cout << first + 1;
for (int i = nextLine[first][0], j = 1; j < n; i = nextLine[i][j], j++) {
cout << ' ' << i + 1;
}
cout << endl << ans << endl;
}
int main()
{
ios::sync_with_stdio(false);
while (cin >> m) {
init();
solve();
}
return 0;
}
UVa - 116 - Unidirectional TSP的更多相关文章
- uva 116 Unidirectional TSP (DP)
uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...
- uva 116 Unidirectional TSP【号码塔+打印路径】
主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...
- UVA 116 Unidirectional TSP(dp + 数塔问题)
Unidirectional TSP Background Problems that require minimum paths through some domain appear in ma ...
- UVA 116 Unidirectional TSP(DP最短路字典序)
Description Unidirectional TSP Background Problems that require minimum paths through some domai ...
- UVA 116 Unidirectional TSP 经典dp题
题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...
- UVa 116 Unidirectional TSP (DP)
该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...
- UVA - 116 Unidirectional TSP 多段图的最短路 dp
题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...
- uva 116 - Unidirectional TSP (动态规划)
第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...
- uva 116 Unidirectional TSP(动态规划,多段图上的最短路)
这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...
随机推荐
- Go 语言递归函数
递归,就是在运行的过程中调用自己. 语法格式如下: func recursion() { recursion() /* 函数调用自身 */ } func main() { recursion() } ...
- MongoDB 监控
在你已经安装部署并允许MongoDB服务后,你必须要了解MongoDB的运行情况,并查看MongoDB的性能.这样在大流量得情况下可以很好的应对并保证MongoDB正常运作. MongoDB中提供了m ...
- 王家林人工智能AI课程大纲和电子书 - 老师微信13928463918
**3980元团购原价19800元的AI课程,团购请加王家林老师微信13928463918. 基于王家林老师独创的人工智能"项目情景投射"学习法,任何IT人员皆可在无需数学和Pyt ...
- springMVC源码分析--RequestParamMethodArgumentResolver参数解析器(三)
之前两篇博客springMVC源码分析--HandlerMethodArgumentResolver参数解析器(一)和springMVC源码解析--HandlerMethodArgumentResol ...
- 万众瞩目之下,ANGULAR 2终于正式发布啦!
转载:https://angular.io/ 怀着期盼的心情,终于盼到了稳定版本,那么我就可以专心研究了,不再为不定期的修复烦恼咯. 今天,在 Google 总部一个特别的聚会上,我们发布了 Angu ...
- java 随机数高效生成
分享牛,分享牛原创.近期去面试经常被问到java如何生产随机数,以及生成很大的字符串保证不能重复,还要考虑性能,之前本人面试别人的时候,可能不会问这个问题.既然这个java随机数问题经常被问到,那咱们 ...
- SpringMVC常用配置
关于Spring.SpringMVC我们前面几篇博客都介绍了很多,但是还不够,这些框架中涉及到的注解.配置非常多,那么我们今天再来介绍一个SpringMVC的基本配置,灵活的使用这些配置,可以让我们在 ...
- Spark技术内幕:Shuffle的性能调优
通过上面的架构和源码实现的分析,不难得出Shuffle是Spark Core比较复杂的模块的结论.它也是非常影响性能的操作之一.因此,在这里整理了会影响Shuffle性能的各项配置.尽管大部分的配置项 ...
- Dynamics CRM2015 on-premises直接升级Dynamics CRM2016 on-premises
Dynamics crm2016 on-premises版本已与12月14日开放下载,下载地址:https://www.microsoft.com/zh-cn/download/details.asp ...
- 5、Android Service测试
如果你在应用中使用了Service,你应该来测试这个Service来确保它正常工作.你可以创建仪表测试来验证Service的行为是否正确:比如,service保存和返回有效的数值并正常的处理数据. A ...